+高级检索
基体合金对连续Al2O3f/Al复合材料微观组织及拉伸强度的影响
作者:
作者单位:

南昌航空大学 轻合金加工科学与技术国防重点学科实验室,南昌航空大学 轻合金加工科学与技术国防重点学科实验室,南昌航空大学 轻合金加工科学与技术国防重点学科实验室,南昌航空大学 轻合金加工科学与技术国防重点学科实验室,南昌航空大学 轻合金加工科学与技术国防重点学科实验室,湖北三江航天万峰科技发展有限公司

中图分类号:

TB333

基金项目:

国家自然科学基金资助项目(51365043);轻合金加工科学与技术国防重点学科实验室开放基金资助项目(GF201401002);江西省自然科学基金资助项目(20151BAB206004);


Effect of matrix alloy on microstructure and tensile strength of continuous Al2O3f/Al composite
Author:
Affiliation:

National Defence Key Discipline Laboratory of Light Alloy Processing Science and Technology,Nanchang Hangkong University,National Defence Key Discipline Laboratory of Light Alloy Processing Science and Technology,Nanchang Hangkong University,National Defence Key Discipline Laboratory of Light Alloy Processing Science and Technology,Nanchang Hangkong University,National Defence Key Discipline Laboratory of Light Alloy Processing Science and Technology,Nanchang Hangkong University,National Defence Key Discipline Laboratory of Light Alloy Processing Science and Technology,Nanchang Hangkong University,Hubei Sanjiang Space Wanfeng Science technology Development Co Ltd

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    选用Nextel610型Al2O3纤维作为增强体,采用真空气压浸渗法制备了纤维体积分数40%、基体合金分别为1A99、ZL210A、ZL301及7075合金的单向连续Al2O3f/Al复合材料,并用NaOH溶液萃取出Al2O3纤维,研究了基体合金对连续Al2O3f/Al复合材料的致密度、纤维损伤及拉伸强度的影响。结果表明:基体合金对连续Al2O3f/Al复合材料的致密度和微观组织有明显影响,其中连续Al2O3f/ZL301复合材料致密度最高为99.2%,组织缺陷最少;连续Al2O3f/1A99复合材料致密度最低为96.8%,这种差异是由于不同基体与纤维之间润湿性不同导致的。不同基体与纤维发生了不同程度的界面反应,最后表现为对纤维的损伤程度不同。连续Al2O3f/1A99、Al2O3f/ZL210A、Al2O3f/ZL301及Al2O3f/7075四种复合材料的拉伸强度分别为465MPa、479MPa、680MPa和389MPa,缺陷、纤维损伤和界面结合强度是影响连续Al2O3f/Al复合材料强度的主要因素。

    Abstract:

    The vacuum gas pressure infiltration was performed for the continuous Al2O3f/Al composite with the volume fraction of 40%, of which the reinforced material was Nextel610-Al2O3 fiber, Al2O3 fibers were extracted using NaOH solution, the matrix alloys were 1A99, ZL210A, ZL301 and 7075 alloys, the effects of matrix alloy on the density, fiber damage and tensile strength of continuous Al2O3f/Al composites were studied. The results showed that different matrix alloys have obvious influence on the density and microstructure of the composites. The density of continuous Al2O3f/ZL301 composite is highest as 99.2%, and it has the least defect, the density of continuous Al2O3f/1A99 composite is lowest as 96.8%, the main reason for this difference is the wettability between the matrix and the fiber is different. The degree of interface reaction between different matrix and fiber is different. Eventually, the damage degree of the fiber is different. The tensile strength of continuous Al2O3f/1A99, Al2O3f/ZL210A, Al2O3f/ZL301 and Al2O3f/7075 were 465MPa, 479MPa, 680MPa and 389MPa, respectively. The defect, interfacial reaction degree and the fiber damage are the main factors to determine the tensile strength of the composite.

    参考文献
    [1] Song Meihui, Xiu Ziyang, Wu Gaohui, et al. Transactions of Nonferrous Metals Society of China[J], 2009, 19(S2): s382?s386.
    [2] Wang Tao(王 涛), Zhao Yuxin(赵宇新), Fu Shuhong(付书红) et al. Journal of Aeronautical Materials(航空材料学报), 2013, 33(2): 87?96.
    [3] Xue Liaoyu(薛辽豫), Wang Fuchi(王富耻), Wang Yangwei(王扬卫) et al.Rare Metal Materials and engineering(稀有金属材料与工程)[J], 2014, 43(8): 1908-1912.
    [4] Rawal S P. Surf Interface Anal[J], 2001, 31: 692-700.
    [5] Xiaoya Dai, Wenlong Zhang, Ping Gao, et al. Metallurgical and Materials Transactions A[J], 2014(3), 45(3): 1559-1566.
    [6] Wu Gaohui(武高辉). Acta Materiae Compositae Sinica(复合材料学报)[J], 2014, 31(5): 1228-1237.
    [7] Ji Xing(吉 幸), Luo Xian(罗 贤), Yang Yanqing(杨延清) et al.Rare Metal Materials and engineering(稀有金属材料与工程)[J], 2013, 42(2): 401-405.
    [8]Liao Huanwen(廖焕文), Xu Zhifeng(徐志锋), Yu Huan(余欢), et al. The ChineseJournal of Nonferrous Metals(中国有色金属学报)[J], 2014, 24(9): 2064?2071.
    [9]Wang Lixue(王丽雪), Cao Liyun(曹丽云), Liu Haiou(刘海鸥). Light Alloy Fabrication Technology(轻合金加工技术)[J], 2005, 33(8): 10?12.
    [10]XIiao Hanning(肖汉宁), Chen Gangjun(陈钢军), Gao Pengzhao(高鹏召), et al. Journal of Hunan University(湖南大学学报)[J], 2007, 34(8): 41?44.
    [11] B. McWilliams, J. Dibelka, C.-F. Yen. Materials Science Engineering A[J], 2014(618): 142-152.
    [12] Kang Guozheng(康国政), Gao Qing(高 庆), Yang Chuan(杨 川), et al. Acta Materiae Compositae Sinica(复合材料学报)[J], 2000, 17(2): 25~29.
    [13] Li Tingting(李婷婷), Zhao Ming(赵 明), Fang Keming(方克明), et al. Special Casting and Nonferrous Alloys(特种铸造及有色合金)[J], 2013, 33(6): 582~585.
    [14] Bai Pucun(白朴存), Pei Jie(裴 杰), Dai Xiongjie(代熊杰), et al. Rare Metal Materials and engineering (稀有金属材料与工程) [J], 2009, 38(1): 1-5.
    [15] Mou Jundong(牟俊东), Wei Zuoshan(魏作山), Feng Zengjian(冯增建), et al. Special Casting and Nonferrous Alloys(特种铸造及有色合金)[J], 2011, 31(7): 650~652.
    [16] Qiu Ning(仇 宁), Zhong Lijun(钟黎君), Li Bo(李 波). Acta Materiae Compositae Sinica(复合材料学报)[J], 1990, 7(1): 24~29.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

聂明明,徐志锋,王振军,余欢,蔡长春,王德清.基体合金对连续Al2O3f/Al复合材料微观组织及拉伸强度的影响[J].稀有金属材料与工程,2018,47(10):3063~3071.[Nie Mingming, Xu Zhifeng, Wang Zhenjun, Yu Huan, Cai Changchun, Wang Deqing. Effect of matrix alloy on microstructure and tensile strength of continuous Al2O3f/Al composite[J]. Rare Metal Materials and Engineering,2018,47(10):3063~3071.]
DOI:[doi]

复制
文章指标
  • 点击次数:993
  • 下载次数: 1056
  • HTML阅读次数: 162
  • 引用次数: 0
历史
  • 收稿日期:2016-12-16
  • 最后修改日期:2017-03-01
  • 录用日期:2017-09-12
  • 在线发布日期: 2018-11-08