+高级检索
CSTR系统制备高性能Ni0.6Co0.2Mn0.2(OH)2及电化学性能研究
作者:
作者单位:

大连海事大学 交通运输工程学院

基金项目:

国家自然科学基金资助(51479019,21476035);中央高校基本科研业务费(3132016341)


Synthesization and electrochemical properties of Ni0.6Co0.2Mn0.2(OH)2 ternary cathodes for lithium batteries in the system of CSTR
Author:
Affiliation:

Institute of Traffic and Transportation Engineering,Dalian Maritime University,Dalian

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [14]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    采用共沉淀法在CSTR(连续搅拌反应器系统)工艺体系中批量合成出镍钴锰三元氢氧化物前驱体Ni0.6Co0.2Mn0.2(OH)2 (622),掺入适量的Li2CO3高温焙烧后得到锂离子二次电池正极材料Li[Ni0.6Co0.2Mn0.2]O2。使用扫描电子显微镜(SEM)观察样品形貌,X射线衍射仪(XRD)及透射电子显微镜(TEM)分析合成样品的具体结构,充放电循环测试系统测试其电化学性能。SEM测试表明产物为二次粒子团聚而成类球形颗粒;XRD及TEM结果表明合成的样品具有典型的层状α-NaFeO2结构。在电压范围为2.8 V-4.3 V,0.2 C倍率条件下,首次充放电容量分别为206 mAh g-1 和176 mAh g-1,100次循环后容量保持率达到85%。

    Abstract:

    Ni0.6Co0.2Mn0.2(OH)2 as precursor of lithium-ion batteries ternary cathode material was prepared for batch preparation by a hydroxyl co-precipitation method in the system of CSTR (continuous stirred tank reactor). Then, the Ni0.6Co0.2Mn0.2(OH)2 was roasted with Li2CO3 to receive Li[Ni0.6Co0.2Mn0.2]O2 under high temperature in the air. Scanning electron microscope (SEM), X-ray diffraction (XRD) and Transmission electron microscope (TEM) were used to examine the morphology and structure of the obtained Li[Ni0.6Co0.2Mn0.2]O2. The resulting Li[Ni0.6Co0.2Mn0.2]O2 powders have a type of spherical structure composed of secondary particles with a typical α-NaFeO2 lamellar structure. The electrochemical tests indicate that this cathode material have a good electrochemical reversibility and much better cycling stability in the voltage range of 2.8 and 4.3 V. Its initial charge and discharge specific capacity are as high as 206 mAh g-1 and 176 mAh g-1 at 0.2 C, with a capacity retention rate of 85% after 100 cycles.

    参考文献
    [1] Liu Z L, Yu A S, Lee J Y. Synthesis and characterization of LiNi1-x-yCoMnyO2 as the cathode materials of secondary lithium batteries [J]. Journal of Power Sources, 1999, 81:416–419.
    [2] Liang Yongguang, Han Xiaoyan, Zhou Xinwen et al. Significant improved electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2 cathode on volumetric energy density and cycling stability at high rate [J]. Electrochemistry Communications, 2007, 9:965–970.
    [3] Deng C, Liu L, Zhou W et al. Effect of synthesis condition on the structure and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 prepared by hydroxide co-precipitation method [J]. Electrochimica Acta, 2008, 53:2441–2447.
    [4] Li Lingjun, Li Xinhai, Wang Zhixing et al. A simple and effective method to synthesize layered LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium ion battery [J]. Powder Technology, 2011, 206:353–357.
    [5] Yang Shunyi, Wang Xianyou, Liu Ziling et al. Influence of pretreatment process on structure, morphology and electrochemical properties of Li[Ni1/3Co1/3Mn1/3]O2 cathode material [J]. Transactions of Nonferrous Metals Society of China,S2011, 21(9):1995-2001.
    [6] Zhang S, Deng C, Fu B L et al. Synthetic optimization of spherical Li[Ni1/3Mn1/3Co1/3]O2 prepared by a carbonate co-precipitation method [J]. Powder Technology, 2010, 198:373–380.
    [7] Wang Dapeng, Belharouak Ilias, Koenig Gary M et al. Growth mechanism of Ni0.3Mn0.7CO3 precursor for high capacity Li-ion battery cathodes [J]. Journal of Materials Chemistry, 2011, 21:9290–9295.
    [8] Bréger Julien, Jiang Meng, Dupré Nicolas et al. High-resolution X-ray diffraction, DIFFaX, NMR and first principles study of disorder in the Li2MnO3-Li[Ni1/2Mn1/2]O2 solid solution [J]. Journal of Solid State Chemistry, 2005, 178:2575–2585.
    [9] Shaju K M, Subba Rao G V, Chowdari B V R. Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries [J]. Electrochimica Acta, 2002, 48:145–151.
    [10] Li J, Kl?psch R, Stan M C et al. Synthesis and electrochemical performance of the high voltage cathode material Li[Li0.2Mn0.56Ni0.16Co0.08]O2 with improved rate capability [J]. Journal of Power Sources, 2011, 196:4821–4825.
    [11] Zhao Xin, Hayner Cary M, Kung Mayfair C et al. Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications [J]. ACS Nano, 2011, 5:8739–8749.
    [12] Wu Zhongshuai, Ren Wencai, Xu Li et al. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries [J]. ACS nano, 2011, 5(7):5463–5471.
    [13] Haibo Wang. Chuanjian Zhang, Zhihong Liu et al. Nitrogen-doped graphene nanosheets with excellent lithium storage properties[J]. Journal of Materials Chemistry, 2011, 21(14):5430-5434.
    [14] Li Lingjun, Li Xinhai, Wang Zhixing et al. Synthesis, structural and electrochemical properties of LiNi0.79Co0.1Mn0.1Cr0.01O2 via fast co-precipitation. Journal of Alloys and Compounds, 2010, 507:172–177.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

崔永福,崔金龙,满建宗,程付鹏,张鹏超,李 嵩,文钟晟,孙俊才. CSTR系统制备高性能Ni0.6Co0.2Mn0.2(OH)2及电化学性能研究[J].稀有金属材料与工程,2019,48(2):587~593.[Cui Yongfu, Cui Jinlong, Man Jianzong, Cheng Fupeng, Zhang Pengchao, Li Song, Wen Zhongsheng, Sun Juncai. Synthesization and electrochemical properties of Ni0.6Co0.2Mn0.2(OH)2 ternary cathodes for lithium batteries in the system of CSTR[J]. Rare Metal Materials and Engineering,2019,48(2):587~593.]
DOI:10.12442/j. issn.1002-185X.20170603

复制
文章指标
  • 点击次数:979
  • 下载次数: 1361
  • HTML阅读次数: 151
  • 引用次数: 0
历史
  • 收稿日期:2017-07-08
  • 最后修改日期:2017-10-27
  • 录用日期:2017-11-08
  • 在线发布日期: 2019-03-15