+高级检索
基于熔池监测的激光沉积制造成形工艺参数的分析及预测
作者:
作者单位:

沈阳航空航天大学航空制造工艺数字化国防重点学科实验室

中图分类号:

TG146.2+3

基金项目:

国家重点研发计划项目(2016YFB1100504);国家自然科学基金项目(51505301,51375316);辽宁省自然科学基金项目(2015020118)


Process parameters analysis and prediction during laser deposition manufacturing based on melt pool monitoring
Author:
Affiliation:

1.Key Laboratory of Fundamental Science for National Defense of Aeronautical Digital Manufacturing Process,Shenyang Aerospace University;2.China

Fund Project:

The National Key R&D Program of China (2016YFB1100504); NSFC (51505301, 51375316); Shenyang additive manufacturing engineering research center program (F16-078-8-00)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    激光沉积制造过程中,熔池宽度是成形精度的关键,主要受到工艺参数的影响。本文建立了基于CCD高速摄像机的熔池在线监测系统,为了提高熔池宽度检测精度,应用卡尔曼滤波技术对熔池宽度测量值进行了去噪处理。采用正交试验设计方法和多元回归分析,建立了熔池宽度与三个主要工艺参数(激光功率、扫描速度和送粉速率)间的关系模型。并设计单一变量实验对模型进行了验证。最后,利用粒子群算法(PSO)对薄壁结构的成形过程参数进行了预测。结果表明,对LDM成形过程进行工艺参数的分析和预测为实现沉积层成形精度的控制提供了依据。

    Abstract:

    During laser deposition manufacturing (LDM) process, melt pool width which is greatly influenced by process parameters is essential for the forming tracks geometry. In this paper, the melt pool geometry evolution was monitored by a CCD camera, and a method of applying Kalman filtering for the melt pool width detection during LDM process was presented to obtain accurate value. Orthogonal experimental design and multiple regression analysis were used to establish an empirical model describing the correlation between the melt pool width and three main process parameters (laser power, scanning speed, and powder feeding rate). And the developed model was verified experimentally. Finally, Particle swarm optimization (PSO) was implemented for prediction of process parameters during the buildup of a thin wall. The results indicate that process parameters analysis and prediction for LDM process could make it possible to acquire an efficient process for the forming tracks geometry control.

    参考文献
    1 Elwany A, Tapia G. Manufacturing Science and Engineering[J], 2014, 060801:1
    2Shi Qimin, Gu Dongdong, Xia Mujianl et al. Optics Laser Technology [J], 2016, 84: 9
    3Zhong Chongliang, Gasser A, Kittel J. Material and Design[J], 2016, 98: 128
    4Ravi G A, Hao X J, Wain N. Materials and Design[J], 2013, 47: 731
    5De A, Debroy T. Journal of Applied Physics[J], 2014, 116(116): 1249051
    6Yu Jun, Lin Xin, Chen Junjie et al. Applied Surface Science [J]., 2010, 256: 4612
    7Jiang Shujuan, Liu Weijun, Xiang Fei. International Conference on Mechatronics and Automation [J], 2006, 1717
    8Han Lijun, Frank W.Liou, Srinvas Musti. Department of Mechanical and Aerospace [J], 2005, 127: 1005
    9Qiu Chunlei, Ravi GA, Dance C. Journal of Alloys and Compounds [J], 2015, 692: 351
    10Farahmand P, Liu Shuang, Zheng Zhe et al. Ceramics International [J], 2014, 40(10): 15421
    11Hussam EC, Bruno C, Samuel B. Optics and Lasers in Engineering [J], 2012, 50(3): 413
    12Song Lijun , Vijayavel BS, Dutta B. Int J Adv Manuf Technol [J], 2012, 58(1):247
    13Smurov I , Doubenskaia M, Zaitsev A. Physics Procedia [J], 2012, 39: 743.
    14Farahmand P, Kovacevic R. Lasers in Manufacturing Materials Processing [J],S2014,S1: 1
    15Ding Yaoyu, Warton J, Kovacevic R. Additive Manufacturing [J], 2016, 10: 24
    16Thorsten H, Mechael C, Konrad W et al. Additive Manufacturing [J], 2017, 14: 116
    17Lie Tang, Robert G.. Journal of Manufacturing Science and Engineering [J], 2010, 132: 011010
    18Ahmad M, Alireza F, Amir K. Applied Soft Computing [J], 2013, 13: 1505
    19Ji Weidong, Zhu Songyu. International Journal of u-and e-Service, Science and Technology [J], 2016, 9(1): 179
    20Kennedy J, Eberhart RC. Proceedings of the IEEE International Conference on Networks [J], 1995, 4(8): 1942
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

钦兰云,徐丽丽,杨光,尚纯,王维.基于熔池监测的激光沉积制造成形工艺参数的分析及预测[J].稀有金属材料与工程,2019,48(2):419~425.[Qin Lanyun, Xu Lili, Yang Guang, Shang Chun, Wang Wei. Process parameters analysis and prediction during laser deposition manufacturing based on melt pool monitoring[J]. Rare Metal Materials and Engineering,2019,48(2):419~425.]
DOI:10.12442/j. issn.1002-185X.20170663

复制
文章指标
  • 点击次数:1254
  • 下载次数: 1621
  • HTML阅读次数: 169
  • 引用次数: 0
历史
  • 收稿日期:2017-07-27
  • 最后修改日期:2017-08-23
  • 录用日期:2017-09-12
  • 在线发布日期: 2019-03-15