+高级检索
喷丸强化对FGH4097粉末高温合金室温高周疲劳极限的影响
作者:
作者单位:

现代制造技术教育部重点实验室 贵州大学,高性能金属结构材料与制造技术国家地方联合工程实验室,高性能金属结构材料与制造技术国家地方联合工程实验室,现代制造技术教育部重点实验室 贵州大学

基金项目:

现代制造技术教育部重点实验室开放基金(XDKFJJ[2016]05);贵州省科技计划(黔科合重大专项字 ([2014]6012);贵州省科技计划(黔科合JZ字[2014]2003)


High Cycle Fatigue Limitation of FGH4097 P/M Superalloys by Shot Peening at Room Temperature
Affiliation:

guizhou university,,,

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    本文对FGH4097粉末高温合金进行喷丸强化,测定室温下高周疲劳极限,利用SEM观察疲劳断口特征及喷丸表面形貌,X射线应力仪和超微小动态显微硬度仪测定试样表层残余应力σr和显微硬度H,采用EBSD及TEM观察喷丸强化层的微观特征。结果表明:室温下,与未喷丸试样相比,喷丸后残余压应力更大、更深和更稳定,有利于提高疲劳裂纹萌生抗力及降低裂纹扩展速率;且喷丸表层的高位错密度、大量小角度晶界及软取向晶粒数量减少阻碍疲劳裂纹在表面萌生, 从而FGH4097高周疲劳极限提高20.7%。

    Abstract:

    Effects of shot peening on high cycle fatigue limitation of the powder metallurgical nickle-based FGH4097 superalloy at room temperature were investigated in this article. Fatigue fracture characteristics and shot peening surface morphology were observed by SEM, the sample surface residual stresses σr and microhardness H were determined by X-ray diffraction stress tester and ultra-small dynamic microhardness tester, and EBSD and TEM were used to observe the microscopic characteristics of the shot peening layer. The results show that compressive residual stresses induced by shot peening are more deeper and more stable than without shot peening, which is beneficial to improve the resistance of fatigue crack initiation and reduce crack propagation rate. And the high dislocation density, a large number of low-angle boundary and a small number of soft orientation grain in the surface layer of shot peening make the fatigue crack difficult to initiate at the surface. So, 20.7% increasing at high cycle fatigue limitation of the FGH4097 superalloy at room temperature.

    参考文献
    [1] Soula A, Renollet Y, Boivin D, et al. Materials Science Engineering A [J], 2009, 510: 301~306.
    [2] Zou Jinwen (邹金文),Wang Wuxiang(汪武祥). Journal of Aeronautical Materials(航空材料学报) [J],2006 , 03: 244~250.
    [3] Lei Jingfu(雷景富), Zheng Yong(郑勇), Yu Jun(余俊), et al. Aerospace Materials Technology[J],2011, 06: 18~22.
    [4] Zhang Yiwen(张义文), Shangguan Yongheng(上官永恒). Powder Metallurgy Industry[J],2004,14(6): 31~43.
    [5] Gao Yukui(高玉魁), Zhong Zhen(仲政), Lei Liming(雷力明). Rare Metal Materials and Engineering[J].2016, 45(5): 1230~1234.
    [6] High temperature materials branch of China metal institute. China Superalloys Handbook(中国高温合金手册(下卷)) [M]. Beijing: China Zhijian Publishing House, Standards Press of China, 2012,645.
    [7] Zhang Yiwen(张义文),Tao Yu(陶莹),Zhang Ying(张莹) et al. Power and energy with high temperature structural materials ———Proceedings of 11th Annual meeting of China Superalloys(动力与能源用高温结构材料——第十一届中国高温合金年会)[C], Beijing: Chinese Society for Metals Conference Proceedings, 2007:501.
    [8] Cheng Qian(程茜),Dong Jianxin(董建新),Zhang Maicang(张麦仓).World Iron Steel[J],2001,5:43~51
    [9] Yang Sheng(杨升).Proceedings of 15th Annual meeting of China association for science and technology(第十五届中国科协年会第13分会场:航空发动机设计、制造与应用技术研讨会) [C], Guiyang: China Association for Science and Technology to Learn Academic Department, 2013:5.
    [10] Zhang Ying(张莹), Zhang Yiwen(张义文), Zhang Na(张娜), et al. Acta Metallurgica Sinica[J],2010, 46(04): 444~450.
    [11] Wang Renzhi(王仁智), Ru Jilai(汝继来), Li Xiangbin(李向斌).Journal of Aeronautical Materials[J],1993, (02): 9~19.
    [12] Ru Jilai(汝继来),Wang Renzhi(王仁智), Li Xiangbin(李向斌). Journal of Aeronautical Materials[J], 1996,16(1): 12~17.
    [13] Zou Jinwen(邹金文), Wang Yu(汪煜), Wang Renzhi(王仁智). Power and energy with high temperature structural materials ———Proceedings of 11th Annual meeting of China Superalloys(动力与能源用高温结构材料——第十一届中国高温合金年会)[C], Beijing: Chinese Society for Metals Conference Proceedings, 2007:507.
    [14] Zhong Liqiong(钟丽琼), Yan Zhen(严振), Liang Yilong(梁益龙),et al. Rare Metal Materials and Engineering[J],2015, 44(05): 1224~1228.
    [15] Yan Zhen(严振), Liang Yilong(梁益龙),Zhang Zejun(张泽军),et al.Chinese Journal of Rare Metals[J],2014,38(4):554~560.
    [16] Hu Naisai(胡奈赛),Wang Qinyong(王庆勇),Lin Li(林立),et al. Journal of Xi`an Jiaotong university[J],1992,03:93~98.
    [17] Gao Yukui, Wu X R. Acta Materialia[J],2011, 59(9): 3737~3747.
    [18] Liang Y L, Zhong L Q, Yan Z. Materials Science Forum [J],2016, 849: 302~308.
    [19] Yong-Jun C, Hjelen J, J R H. Transactions of Nonferrous Metals Society of China[J], 2012,22: 1801~1809.
    [20] Liu S, Gao S Y, Zhou Y F, et al. Materials Science and Engineering: A [J],2014, 617: 127~138.
    [21] Fang S, Zhang M C, Yu Q Y, et al. Advanced Materials Research [J],2014, 1077: 50~55.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

钟丽琼,梁益龙,严振,胡浩.喷丸强化对FGH4097粉末高温合金室温高周疲劳极限的影响[J].稀有金属材料与工程,2018,47(7):2198~2204.[zhongliqiong, Liang Yilong, Yan Zhen, Hu Hao. High Cycle Fatigue Limitation of FGH4097 P/M Superalloys by Shot Peening at Room Temperature[J]. Rare Metal Materials and Engineering,2018,47(7):2198~2204.]
DOI:[doi]

复制
文章指标
  • 点击次数:1004
  • 下载次数: 1154
  • HTML阅读次数: 167
  • 引用次数: 0
历史
  • 收稿日期:2017-12-03
  • 最后修改日期:2017-12-19
  • 录用日期:2018-01-09
  • 在线发布日期: 2018-10-10