+高级检索
塑性变形条件下硬质合金中重位点阵晶界的特征分布
作者单位:

北京工业大学


Grain Boundary Character Distributions of Coincidence Site Lattice Boundaries in WC-Co Composites under Plastic Deformation
Affiliation:

Beijing University of Technology

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [15]
  • | | |
  • 文章评论
    摘要:

    通过五参数法,测定了一种塑性变形条件下硬质合金结构中的两类重位点阵晶界,即Σ13a晶界和Σ2晶界,的晶界特征分布。通过与未经过塑性变形的试样进行对比,发现两类重位点阵晶界的数量以及相应惯习面的赋存频率,在塑性变形条件下都有所降低。通过对硬质合金试样结构中的晶界面类型进行精确区分,塑性变形条件下晶界特征分布的演进过程得到解释。

    Abstract:

    Grain boundary character distributions (GBCDs) have been measured for both Σ13a and Σ2 coincidence site lattice (CSL) boundaries in WC-Co composites under plastic deformation condition via five parameter analysis (FPA) method. For the two CSL boundaries, compared to the cases in the undeformed sample, both populations and the habit plane occurrence frequencies of the CSL boundaries decreased in the plastic deformed sample. The interpretation about the evolution of GBCDs during plastic deformation is proposed based on the fine-sorted crystallographic plane categories.

    参考文献
    [1] S. Hagege, G. Nouet, and P. Delavignette, Grain boundary analysis in TEM IV. Coincidence and the associated defect structure in tungsten carbide, Phys. Stat. Sol. 1980, 62(1), p 97-107
    [2] J. Vicens. M. Benjdir, G. Nouet. A. Dubon and J.Y. Laval, Cobalt intergranular segregation in WC-Co composites, J. Mater. Sci,. 1994, 29(4), p 987-994
    [3] M. Christensen and G. Wahnstrom, Co-phase penetration of grain boundaries from first principles, Phys. Rev. B, 2003, 67(11), p 115415
    [4] G.S. Rohrer, Measuring and interpreting the structure of grain-boundary networks, J. Am. Ceram. Soc., 2011, 94(3), p 633-646
    [5] D.M. Saylor, B.S. Dasher, B.L. Adams, and G.S. Rohrer, Measuring the five-parameter grain-boundary distribution from observations of planar sections, Metall. Mater. Trans. A, 2004 , 35(7), p 1981-1989
    [6] S. Ratanaphan, D.L. Olmsted, V.V. Bulatov, E.A. Holm, A.D. Rollett, and G.S. Rohrer, Grain boundary energies in body-centered cubic metals, Acta Mater., 2015, 88(-), p 346-354
    [7] X. Zhong, D.J. Rowenhorst, H. Beladi, and G.S. Rohrer, The five-parameter grain boundary curvature distribution in an austenitic and ferritic steel, Acta Mater., 2017, 123(-), p 136-145
    [8] H. Beladi, V. Tari, I.B. Timokhina, P. Cizek, G.S. Rohrer, A.D. Rollett and P.D. Hodgson, On the crystallographic characteristics of nanobainitic steel, Acta Mater., 2017, 127(-), p 426-437
    [9] H. Beladi, Q. Chao, and G.S. Rohrer, Variant selection and intervariant crystallographic planes distribution in martensite in a Ti-6Al-4V alloy, Acta Mater., 2014, 80(-), p 478-489
    [10] M.N. Kelly, K. Glowinski, N.T. Nuhfer, and G.S. Rohrer, The five parameter grain boundary character distribution of alpha-Ti determined from three-dimensional orientation data, Acta Mater., 2016, 111(-), p 22-30
    [11] A. Ostapovets, P. Molnar, and P. Lejcek, Boundary plane distribution for Σ13 grain boundaries in magnesium, Mater. Lett., 2014, 137(-), p 102-105
    [12] C.S. Kim, T.R. Massa, and G.S. Rohrer, Interface character distributions in WC-Co composites, J. Am. Ceram. Soc., 2008, 91(3), p 996-1001
    [13] C.S. Kim and G.S. Rohrer, Geometric and crystallographic characterization of WC surfaces and grain boundaries in WC-Co composites, Interface Sci., 2004, 12(1), p 19-27
    [14] X.K. Yuan, G.S. Rohrer, X.Y. Song, H. Chien, J. Li, and C.B. Wei, Effect of plastic deformation on the Σ2 grain boundary plane distribution in WC–Co cemented carbides, Int. J. Refract. Met. H., 2014, 47(-), p 38-43
    [15] D.G. Brandon, The structure of high-angle grain boundaries, Acta Metall. Mater., 1966, 14(11), p 1479-1484
    [16] J.K. Mackenzie, Second paper on statistics associated with the random disorientation of cubes, Biometrika, 1958, 45(1/2), p 229-240
    [17] J.D.Bolton and M. Redington, Plastic deformation mechanisms in tungsten carbide, J. Mater. Sci., 1980, 15(12), p 3150-3156
    [18] M.V.G. Petisme, M.A. Gren, and G. Wahnstrom, Molecular dynamics simulation of WC/WC grain boundary sliding resistance in WC-Co cemented carbides at high temperature, Int. J. Refract. Met. H., 2015, 49(1), p 75-80
    [19] S.A.E. Johansson, M.V.G. Petisme, and G. Wahnstrom, A computational study of special grain boundaries in WC-Co cemented carbides, Comp. Mater. Sci., 2015, 98(53), p 345-353
    [20] G. Ostberg, M.U. Farooq, M. Christensen, H.O. Andren, U. Klement, and G. Wahnstrom, Effect of ∑2 grain boundaries on plastic deformation of WC–Co cemented carbides, Mat. Sci. Eng. A-Struct., 2006, 416(1), p 119-125
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

原效坤,张雪红,邓思旭.塑性变形条件下硬质合金中重位点阵晶界的特征分布[J].稀有金属材料与工程,2019,48(8):2454~2459.[Xiaokun Yuan, Xuehong Zhang, Sixu Deng. Grain Boundary Character Distributions of Coincidence Site Lattice Boundaries in WC-Co Composites under Plastic Deformation[J]. Rare Metal Materials and Engineering,2019,48(8):2454~2459.]
DOI:10.12442/j. issn.1002-185X.20180190

复制
文章指标
  • 点击次数:921
  • 下载次数: 1262
  • HTML阅读次数: 163
  • 引用次数: 0
历史
  • 收稿日期:2018-03-06
  • 最后修改日期:2018-06-02
  • 录用日期:2018-06-27
  • 在线发布日期: 2019-09-05