+高级检索
包埋法Co-Cr-Y改性高温合金GH586渗铝涂层高温氧化行为
作者:
作者单位:

Nantong Sipping College


High temperature oxidation behavior of Co-Cr-Y-modified Aluminide Coatings on Ni-based superalloy by pack cementation process
Author:
Affiliation:

Mechanical and Electrical Department,Nantong Shipping College,Nantong

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    通过粉末包埋法运用Co-Cr-Y对高温合金GH586渗铝涂层进行改性,并进行了高温氧化行为的研究。研究结果表明:经Co-Cr-Y改性后的渗铝涂层在1000 °C氧化100h后,其平均增重为0.36毫克/平方厘米,远远低于基体的增重量。经X射线衍射分析,涂层的主要物相为NiAl,在1000 °C氧化过程中生成了连续而致密的氧化膜,主要包含 Al2O3, Cr2O3和 CoCr2O4。通过扫描电镜观察涂层表面和截面的形貌,可以涂层比基体展现出了更为优秀的氧化性能。另外发现,氧化过程中的富Cr(W)在晶界上聚集,有利于为涂层生成连续而致密的氧化膜不断提供Cr元素,从而提高涂层高温氧化性能。

    Abstract:

    In this work the microstructures and high temperature oxidation behaviors of Co-Cr-Y modified pack aluminide coatings on Ni-based superalloy GH586 were investigated. The results indicated that the specific Co-Cr-Y-modified aluminide coating had a mass gain of only 0.36 mg/cm2 after oxidation at 1000 °C for 100 h, it was much less than that of the substrate at 1000 °C. From the X ray diffraction the phases of the coatings were mainly AlNi, and after oxidation for 100h at 1000 °C the denser oxidation scale was composed of Al2O3, Cr2O3, and CoCr2O4. The surface and cross sectional morphologies were characterized by scanning electron microscope (SEM). The coating exhibited the better high temperature oxidation resistance, compared to the oxidation film of GH586 without coating. Moreover, the growing Cr (w) rich phase was gradually gathered in the grain boundaries during the oxidation, it is beneficial to provide more Cr element for the dense oxidation film, which is mainly attributed to the excellent high temperature oxidation resistance.

    参考文献
    [1] Fritscher K, Leyens C, Schulz U. Investigation of an as-sprayed NiCoCrAlY overlay coating. A thermoanalytical approach[J]. Materials Science Engineering A, 2004, 369(1):144-150.
    [2] Das D K. Microstructure and high temperature oxidation behavior of Pt - modified aluminide bond coats on Ni - base superalloys[J]. Progress in Materials Science, 2013, 58(2):151-182.
    [3] Jiang S M, Li H Q, Ma J, et al. High temperature corrosion behaviour of a gradient NiCoCrAlYSi coating II: Oxidation and hot corrosion[J]. Corrosion Science, 2010, 52(7):2316-2322.
    [4] Zhang K, Wang Q M, Sun C, et al. Preparation and oxidation behavior of NiCrAlYSi coating on a cobalt-base superalloy K40S[J]. Corrosion Science, 2008, 50(6):1707-1715.
    [5] Jackson R D, Taylor M P, Evans H E, et al. Oxidation Study of an EB-PVD MCrAlY Thermal Barrier Coating System[J]. Oxidation of Metals, 2011, 76(3-4):259-271.
    [6] Hesnawi A, Li H, Zhou Z, et al. Isothermal oxidation behaviour of EB-PVD MCrAlY bond coat[J]. Vacuum, 2007, 81(8):947-952.
    [7] Lu J, Zhu S, Wang F. High temperature corrosion behavior of an AIP NiCoCrAlY coating modified by aluminizing[J]. Surface Coatings Technology, 2011, 205(21–22):5053-5058.
    [8] Lu J, Zhu S, Wang F. Cyclic Oxidation and Hot Corrosion Behavior of Y/Cr-Modified Aluminide Coatings Prepared by a Hybrid Slurry/Pack Cementation Process[J]. Oxidation of Metals, 2011, 76(1-2):67-82.
    [9] Jamali H, Mozafarinia R, Razavi R S, et al. Comparison of thermal shock resistances of plasma-sprayed nanostructured and conventional yttria stabilized zirconia thermal barrier coatings[J]. Ceramics International, 2012, 38(8):6705-6712.
    [10]Cui Q, Seo S M, Yoo Y S, et al. Thermal durability of thermal barrier coatings with bond coat composition in cyclic thermal exposure [J]. Surface Coatings Technology, 2015, 284:69-74.
    [11]Shi L, Xin L, Wei H, et al. Influences of MCrAlY Coatings and TBCs on Oxidation Behavior of a Ni-Based Single Crystal Superalloy[J]. Materials Science Forum, 2015, 816:289-296.
    [12]Palcut M, Priputen P, Kusy M, et al. Corrosion behaviour of Al–29at%Co alloy in aqueous NaCl[J]. Corrosion Science, 2013, 75(7):461-466.
    [13] Houngninou C, Chevalier S, Larpin J P. Synthesis and characterisation of pack cemented aluminide coatings on metals [J]. Applied Surface Science, 2004, 236(1–4):256-269.
    [14]Zhou C, Xu H, Gong S, et al. A study on aluminide and Cr-modified aluminide coatings on TiAl alloys by pack cementation method [J]. Surface Coatings Technology, 2000, 132(2–3):117-123.
    [15]Zhou W, Zhao Y G, Qin Q D et al. A new way to produce Al + Cr coating on Ti alloy by vacuum fusing method and its oxidation resistance[J]. Materials Science Engineering A, 2006, 430(1–2):254-259.
    [16]S. Ford, R. Kartono, D.J. Young. Oxidation resistance of Pt-modified γ/γ′ Ni-Al at 1150 °C[J]. Surface Coatings Technology, 2010, 204(12–13): 2051-2054.
    [17] Qiao M, Zhou C. Hot corrosion behavior of Co modified NiAl coating on nickel base superalloys[J]. Corrosion Science, 2012, 63(10):239-245.
    [18] Zhao X, Zhou C. Effect of Y 2 O 3, content in the pack on microstructure and hot corrosion resistance of Y–Co-modified aluminide coating[J]. Corrosion Science, 2014, 86(9):223-230.
    [19] Liu Z, Zhao X, Zhou C. Improved hot corrosion resistance of Y–Ce–Co-modified aluminide coating on nickel base superalloys by pack cementation process[J]. Corrosion Science, 2015, 92:148-154.
    [20] B.A. Pint, Haynes J A, Besmann T M. Effect of Hf and Y alloy additions on aluminide coating performance [J]. Surface Coatings Technology, 2010, 204(20):3287-3293.
    [21]Cao J, Zhang J, Hua Y, et al. Microstructure and hot corrosion behavior of the Ni-based superalloy GH202 treated by laser shock processing[J]. Materials Characterization, 2017, 125:67-75.
    [22]Jiang-Dong Cao, Jun-Song Zhang, Yin-Qun Hua, et al. High temperature oxidation behavior of Ni-based superalloy GH586 in air[J]. Rare Metals, 2017, 118(11):1-8.
    [23] Cao J, Zhang J, Hua Y, et al. Improving the high temperature oxidation resistance of Ni-based superalloy GH202 induced by laser shock processing[J]. Journal of Materials Processing Technology, 2016, 243:31-39.
    [24] Cao J, Zhang J, Hua Y, et al. Microstructures and isothermal oxidation behaviors of CoCrAlYTaSi coating prepared by plasma spraying on the Ni-based superalloy GH202[J]. Surface Coatings Technology, 2017, 311.
    [25] Liu P S, Liang K M, Gu S R. High-temperature oxidation behavior of aluminide coatings on a new cobalt-base superalloy in air[J]. Corrosion Science, 2001, 43(7):1217-1226.
    [26] B.A. Pint. The role of chemical composition on the oxidation performance of aluminide coatings[J]. Surface Coatings Technology, 2004, s188–189(1):71-78.
    [27] Zhang Y, Haynes J A, Wright G, et al. Effects of Pt incorporation on the isothermal oxidation behavior of chemical vapor deposition aluminide coatings[J]. Metallurgical Materials Transactions A, 2001, 32(7):1727-1741.
    [28] Fan Q X, Peng X, Yu H J, et al. The isothermal and cyclic oxidation behaviour of two Co modified aluminide coatings at high temperature[J]. Corrosion Science, 2014, 84(8):42-53.
    [29] Zhang K, Wang Q M, Sun C, et al. Preparation and oxidation behavior of NiCrAlYSi coating on a cobalt-base superalloy K40S[J]. Corrosion Science, 2008, 50(6):1707-1715.
    [30] Xu C Z, Jiang S M, Bao Z B, et al. Isothermal oxidation behaviour of a gradient NiCoCrAlSiY coating deposited by arc ion plating on a Ni-based single crystal superalloy[J]. Corrosion Science, 2009, 51(6):1467-1474.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

曹将栋.包埋法Co-Cr-Y改性高温合金GH586渗铝涂层高温氧化行为[J].稀有金属材料与工程,2018,47(12):3616~3623.[Cao Jiangdong. High temperature oxidation behavior of Co-Cr-Y-modified Aluminide Coatings on Ni-based superalloy by pack cementation process[J]. Rare Metal Materials and Engineering,2018,47(12):3616~3623.]
DOI:[doi]

复制
文章指标
  • 点击次数:956
  • 下载次数: 1338
  • HTML阅读次数: 167
  • 引用次数: 0
历史
  • 收稿日期:2018-03-31
  • 最后修改日期:2018-05-19
  • 录用日期:2018-05-21
  • 在线发布日期: 2019-01-04