+高级检索
镍基变形高温合金中g′ 相的多尺度分布行为及其对热变形性能的影响
作者单位:

1.上海交通大学;2.中国航发商用航空发动机有限责任公司

基金项目:

Aerospace Support Fund (Grant No. 15GFZ-JJ20-04), the Industry-University-Research Cooperation Annual Plan of Shanghai under Project No. CXY-2016-004 and China Postdoctoral Science Foundation 17Z102060125


Multimodal distribution of g′ phase and effect on hot deformation in a wrought nickel base superalloy
Affiliation:

Shanghai Jiao Tong University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    本文主要研究了镍基变形高温合金在不同热处理过程中g′相的析出、形貌、尺寸及分布行为。通过扫描电镜观察分析高温固溶热处理后连续冷却、中断固溶冷却以及等温时效淬火后的组织构成。研究结果表明,固溶处理后连续冷去过程中,当冷却速率较高时,二次g′尺寸大小均匀,呈现单峰分布,随着冷却速率降低,二次g′尺寸增加,逐渐聚集长大并呈现花状形貌;当等温时效过程中二次g′周围过冷度重新建立,随后淬火过程中会产生三次g′,三次g′与二次g′构成双峰分布。在此基础上,探讨了g′相析出及演化对合金热变形行为的影响。

    Abstract:

    The microstructural evolution of different generations of ?′ precipitates during various heat treatment processes of a nickel base superalloy has been investigated. After solutionizing in the single ? phase field, continuous cooling, interrupted cooling and isothermal annealing tests were performed and characterization of the precipitates was carried out by scanning electron microscopy. It is found that a monomodal size distribution of the secondary ?′ precipitates can be achieved at a very high cooling rate in the continuous cooling process. With the decrease of the cooling rate, the secondary ?′ precipitates grow gradually and gather together to form a flowery morphology. When the secondary supersaturation is developed in the vicinity of the secondary ?′ precipitates during isothermal annealing, the water-quenched tertiary ?′ precipitates are produced and result in a bimodal size distribution of ?′ precipitates with the larger secondary precipitates. Furthermore, the effects of the secondary ?′ particle growth on the hot deformation are also discussed.

    参考文献
    1Nabarro FRN. Materials Science and Engineering A[J], 1994, 184(2): 167
    2Pollock TM, Tin S. Journal of Propulsion and Power[J], 2006, 22(2): 361
    3Decker RF. JOM[J], 2006, 58(9): 32
    4Kovarik L, Unocic RR, Li J et al. Progress in Materials Science[J], 2009, 54(6): 839
    5Feller-Kniepmeier, Link T, Poschmann I et al. Acta Materialia[J], 1996, 44(6): 2397
    6Bhowal PR, Wright EF, Raymond EL. Metallurgical Transactions A[J], 1990, 21(6): 1709
    7Sinharoy S, Virro-Nic P, Milligan WW. Metallurgical and Materials Transactions A[J], 2001, 32(8): 2021
    8Shah DM, Duhl DN. Superalloys 1984[C], Warrendale, PA; The Minerals, Metals Materials Society, 1984
    9Kang SK, Benn RC. Metallurgical Transactions A[J], 1985, 16(7): 1285
    10Pope DP, Ezz SS. International Metals Reviews[J], 1984, 29(1): 136
    11Jackson MP, Reed RC. Materials Science and Engineering A[J], 1999, 259(1): 85
    12Torster F, Baumeister G, Albrecht J et al. Materials Science and Engineering A[J], 1997, 234-236(30): 189
    13Mao J, Chang K, Yang W et al. Metallurgical and Materials Transactions A[J], 2001, 32(10): 2441
    14Kozar RW, Suzuki A, Milligan WW et al. Metallurgical and Materials Transactions A[J], 2009, 40(7): 1588
    15Singh ARP, Nag S, Hwang JY et al. Materials Characterization[J], 2011, 62(9): 878
    16Furrer DU, Fecht H. Scripta Materialia[J], 1999, 40(11): 1215
    17Radis R, Schaffer M, Albu M et al. Acta Materialia[J], 2009, 57(19): 5739
    18Sarosi PM, Wang B, Simmons JP et al. Scripta Materialia[J], 2007, 57(8): 767
    19Wen YH, Simmons JP, Shen C et al. Acta Materialia[J], 2003, 51(4): 1123
    20Safari J, Nategh S, McLean M. Materials Science and Technology[J], 2006, 22(8): 888
    21Robson JD. Materials Science and Technology[J], 2004, 20(4): 441
    22Robson JD. Acta Materialia[J], 2004, 52(15): 4669
    23Schwarz RB, Labusch R. Journal of Applied Physics[J], 1978, 49(10): 5174
    24Aaronson HI, Laird C, Kinsman KR. Phase transformations[M]. Metals Park, OH: American Society of Metals, 1970
    25Wang J, Osawa M, Yokohawa T et al. Superalloys 2004[C], Warrendale, PA; The Minerals, Metals Materials Society, 2004
    26Chen X, Lin YC, Wen D et al. Materials Design[J], 2014, 57(15): 568
    27Yuan H, Liu WC. Materials Science and Engineering A[J], 2005, 408(1-2): 281
    28Lin Yijian, Cahn RW. Physica Status Solidi[J], 1992, 131(2): 481
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

韩国明,李飞,陈晓燕,李玉龙,王飞,汪东红,孙宝德.镍基变形高温合金中g′ 相的多尺度分布行为及其对热变形性能的影响[J].稀有金属材料与工程,2019,48(9):2821~2828.[Han Guoming, Li Fei, Chen Xiaoyan, Li Yulong, Wang Fei, Wang Donghong, Sun Baode. Multimodal distribution of g′ phase and effect on hot deformation in a wrought nickel base superalloy[J]. Rare Metal Materials and Engineering,2019,48(9):2821~2828.]
DOI:10.12442/j. issn.1002-185X.20180378

复制
文章指标
  • 点击次数:1119
  • 下载次数: 1582
  • HTML阅读次数: 158
  • 引用次数: 0
历史
  • 收稿日期:2018-04-16
  • 最后修改日期:2018-10-22
  • 录用日期:2018-11-08
  • 在线发布日期: 2019-10-09