+高级检索
不同疲劳载荷下工业纯钛再结晶热处理对疲劳裂纹扩展行为影响
作者:
作者单位:

南京工业大学机械与动力工程学院 南京

基金项目:

(No.51475223, 51675260)


Effect of Recrystallization Annealing on Fatigue Crack Growth Behavior of Commercial Pure Titanium under Different Loading Conditions
Author:
Affiliation:

School of Mechanical and Power Engineering,Nanjing Tech University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    本文开展热处理后工业纯钛TA2不同载荷水平下疲劳裂纹扩展实验,考虑裂尖塑性变形程度,研究疲劳裂纹扩展规律以及热处理状态对疲劳裂纹扩展不同阶段的适应性。结果表明,不同疲劳载荷下热处理对疲劳扩展速率产生不同的影响。A类加载热处理后的疲劳裂纹扩展速率下降是由于近门槛区有效载荷的降低,以及近门槛值的提高。B类加载下热处理对有效载荷以及裂尖塑性变形几乎没有什么影响。C类与D类加载下热处理后裂尖塑性变形受到限制,而导致疲劳裂纹扩展速率下降。

    Abstract:

    In this work, fatigue crack propagation experiment of commercial pure titanium TA2 under different load levels after heat treatment is carried out considering the degree of plastic deformation of crack tip, the adaptability of heat treatment state to different stages of fatigue crack growth. Results show that heat treatment has different effects on the fatigue crack growth rate under different loading conditions. The decrease of fatigue crack growth rate with heat treatment in loading A condition is due to the reduction of the effective load near the threshold region and the increase of the near threshold value. Heat treatment in loading B condition has little effect on the effective load and the plastic deformation of crack tip. The plastic deformation of crack tip is restricted after heat treatment under loading C and D conditions, which leads to the decrease of fatigue crack growth rate.

    参考文献
    [1] Peng J, Zhou C Y, Dai Q, et al. Materials Science and Engineering: A[J], 2014, 611: 123-135
    [2] Peng J, Zhou C Y, Dai Q, et al. Materials Science and Engineering: A[J], 2014, 590: 329-337
    [3] Chen Y Q, Yi D Q, Jiang Y, et al. Philosophical Magazine[J], 2013, 93: 2269-2278
    [4] Agnew S R, Vinogradov A Y, Hashimoto S, et al. Journal of Electronic Materials[J], 1999, 28: 1038-1044
    [5] Zhou M Z, Yi D Q, Liu H Q, et al. Materials Science and Engineering: A[J], 2010, 527: 4070-4075
    [6] Chen Y Q, Pan S P, Zhou M Z, et al. Materials Science and Engineering: A[J], 2013, 580: 150-158
    [7] Robinson J L, Beebers C J. Metal Science Journal[J], 2013, 7: 153-159
    [8] Oberwinkler B. Materials Science and Engineering: A[J], 2011, 528: 5983-5992
    [9] Yin D Y, Liu H Q, Chen Y Q, et al. International Journal of Fatigue[J], 2016, 84: 9-16
    [10] Suresh S. Metallurgical Transactions A[J], 1985, 16: 249-260
    [11] Yoder G R, Cooley L A, Crooker T W. Metallurgical Transactions: A[J], 1978, 9: 1413-1420
    [12] Chowdhury P B, Sehitoglu H, Rateick R G, et al. Acta Materialia[J], 2013, 61: 2531-2547
    [13] Shou W B, Yi D Q, Liu H Q, et al. Archives of Civil and Mechanical Engineering[J], 2016, 16: 304-312
    [14] Yonder G R, Cooley Y A, Crooker T W. Engineering Fracture Mechanics[J], 1979, 11: 805-816
    [15] Hanlon T, Kwon Y N, Suresh S. Scripta Materialia[J], 2003, 49: 675-680
    [16] Gall K, Sehitoglu H, Kadioglu Y. Acta Materialia[J], 1996, 44: 3955-3965
    [17] Poondla N, Srivatsan T S, Patnaik A, et al. Journal of Alloys and Compounds[J], 2009, 486: 162-167
    [18] Fu W J(付文杰), Zhao X C(赵西成), Yang X R(杨西荣), et al. Chinese Journal of Materials Research (材料研究学报)[J], 2008, 22: 303-306
    [19] Chen C Q(陈常强), Li S X(李守新), Li G Y(李广义), et al. Acta Metallurgica Sinica (金属学报)[J], 2004, 40: 235-240
    [20] Fan Y J(樊亚军), Zhang Z Y(张战英), Chen Z H(陈志宏), et al. Transactions of Materials and Heat Treatment (材料热处理学报)[J], 2013, 34: 22-25
    [21] Duan X G(段晓鸽), Jiang H T(江海涛), Liu J X(刘继雄), et al. Rare Metals (稀有金属)[J], 2012, 36: 353-356
    [22] American Society for Testing and Materials. ASTM E647-08 Standard test method for measurement of fatigue crack growth rates[S]. America: American Society for Testing and Materials, 2008
    [23] García A M, Sehitoglu H. Metallurgical and Materials Transactions: A[J], 1997, 28: 2263-2275
    [24] Kamp N, Parry M R, Singh K D, et al. Acta Materialia[J], 2004, 52: 343-353
    [25] Zhong Q P(钟群鹏). Study of crack (裂纹学)[M]. Beijing: Higher Education Press, 2014: 61
    [26] Paris P, Erdogan F. Transactions of the ASME Journal of Basic Engineering[J], 1963, 85: 528-534
    [27] Irwin G R. Engineering Fracture Mechanics[J], 1968, 1: 241-257
    [28] Hamon F, Henaff G, Halm D, et al. Fatigue Fracture of Engineering Materials Structures[J], 2012, 35: 160-172
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李建,陆磊,周昌玉,常乐,缪新婷,周彬彬,贺小华.不同疲劳载荷下工业纯钛再结晶热处理对疲劳裂纹扩展行为影响[J].稀有金属材料与工程,2019,48(11):3745~3752.[Li Jian, Lu Lei, Zhou Changyu, Chang Le, Miao Xinting, Zhou Binbin, He Xiaohua. Effect of Recrystallization Annealing on Fatigue Crack Growth Behavior of Commercial Pure Titanium under Different Loading Conditions[J]. Rare Metal Materials and Engineering,2019,48(11):3745~3752.]
DOI:10.12442/j. issn.1002-185X.20180834

复制
文章指标
  • 点击次数:791
  • 下载次数: 1136
  • HTML阅读次数: 137
  • 引用次数: 0
历史
  • 收稿日期:2018-08-03
  • 最后修改日期:2018-12-03
  • 录用日期:2018-12-12
  • 在线发布日期: 2019-12-10