+高级检索
电流密度对TC11钛合金微弧氧化性能的影响
作者单位:

西南石油大学

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    钛合金耐磨性和耐腐蚀性的弱点已经成为限制钛合金使用的瓶颈。在本项工作中,以硅酸钠(Na2SiO3)和钨酸钠(Na2WO4)为电解质在TC11钛合金表面生成一层微弧氧化膜。使用扫描电子显微镜(SEM)、X射线衍射(XRD)和显微硬度测试仪等观察涂层表面形貌和横截面形貌以及内外陶瓷膜层的显微硬度。与基体钛合金相比,当电流密度为9A/dm2,膜层的显微硬度得到提高,但附着力有所降低。 此外,在3.5%NaCl和30%H2SO4溶液中比较分析了膜层的电化学腐蚀和一般腐蚀,当电流密度为9A/dm2时,在30%H2SO4溶液中的膜层具有较低的自腐蚀电流密度。最后,通过SiC和膜层的对磨实验研究了膜层的磨损机理。

    Abstract:

    The weakness of wear resistance and corrosion resistance of titanium alloy has become a bottleneck restricting the use of titanium alloy. In this work, the micro-arc oxidation coating is performed on TC11 sample in electrolyte prepared by sodium silicate (Na2SiO3) and sodium tungstate (Na2WO4). Scanning electron microscopy (SEM), X-ray diffraction (XRD), micro-hardness tester are used to observe the coating surface and cross-sectional morphology, micro-hardness of the inner and outer ceramic coating. The coating is mainly composed of TiO2, γ-Al2O3, and Al2TiO5. TiO2 consists of anatase-TiO2 and a small amount of rutile-TiO2. The outer coating contains a large amount of amorphous SiO2. The electrochemical corrosion and general corrosion of the coating are comparatively analyzed in 3.5% NaCl and 30% H2SO4 solution, and the coating obtained in the 30% H2SO4 solution has a lower self-corrosion current density. Finally, the wear mechanism of the coating is studied by the anti-wear experiment with SiC.

    参考文献
    1Morais L S, Serra G G, Muller C A, Acta Biomater[J], 3(2007) 331-339.
    2Xue W, Krishna B V, Bandyopadhyay A, Acta Biomater[J], 3(2007) 1007-1018.
    3Diego S B, Micéli G B, Segattomello D, Revista Odonto Ciencia[J], 26(2011) 209-214.
    4Valdez B, Kiyota S, Stoytcheva M, et al. Corrosion Science[J], 2014, 87(5):141-149.
    5Vengatesh P, Kulandainathan M A. Acs Appl Mater Interfaces[J], 2015, 7(3):15-26.
    6Zhang Q, Leng Y, Xin R. Biomaterials[J], 2005, 26(16):2857-2865.
    7Kossenko A, Lugovskoy S, Astashina N, et al. Glass Physics Chemistry[J], 2013, 39(6):639-642.
    8H. Hasannejad, T. Shahrabi, A.S. Rouhaghdam, et al. Appl. Surf. Sci[J], 254 (2008) 5683-5690.
    9Cui X, Kim H M, Kawashita M, et al. Journal of Materials Science[J], 2008, 19(4):1767.
    10Zhu X, Ong J L, Kim S, et al. Journal of Biomedical Materials Research[J], 2002, 60(2):333-338.
    11Abbasi S, Rezaie H R, Golestani-Fard F. Characterization and Development of Biosystems and Biomaterials[M], 2013:227-234.
    12Jin F, Chu P K, Wang K, et al. Materials Science Engineering[J], 2008, 476(1-2):78-82.
    13A.L. Yerokhin, X. Nie, A. Leyland, et al. Surf. Coat. Tech[J], 122 (1999) 73-93.
    14S.P. Sah, E. Tsuji, Y. Aoki, et al. Corros. Sci[J], 55 (2012) 90-96.
    15L.-Y. Cui, R.-C. Zeng, S.-K. Guan, et al. J. Alloys Compd[J], 695 (2017) 2464-2476.
    16Zhang X, Du J, Liu B, et al. Journal of Materials Research[J], 2007, 22(9):2497-2504.
    17Yan J K, Teng Y, Ni E X, et al. Key Engineering Materials[J], 2016, 697:612-616.
    18Zhendong Wu, Zhanhua Jiang, Zhongping Yao. Chinese Journal of Nonferrous Metals[J], 2005, 5 (6):946-951.
    19Yaming Wang, Bailing Jiang, Lixin Guo. Chinese Journal of Nonferrous Metals[J], 2004, 14 (4):548-553.
    20Mohedano M, Matykina E, Arrabal R, et al. Applied Surface Science[J], 2015, 346:57-67.
    21Yang W, Li Q, Qian X, et al. Progress in Organic Coatings[J], 2015, 89:260-266.
    22Gu Y, Cai X, Guo Y, et al. Materials Design[J], 2013, 43:542-548.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨眉,唐宁,黄婷玉,杨洪浪,刘洋,王丹,刘伟.电流密度对TC11钛合金微弧氧化性能的影响[J].稀有金属材料与工程,2020,49(2):404~411.[Mei Yang, Ning Tang, Tingyu Huang, Honglang Yang, Yang Liu, Dan Wang, Wei Liu. Effect of Current Density on Micro-arc Oxidation Properties of TC11 Titanium Alloy[J]. Rare Metal Materials and Engineering,2020,49(2):404~411.]
DOI:10.12442/j. issn.1002-185X.20180922

复制
文章指标
  • 点击次数:998
  • 下载次数: 1300
  • HTML阅读次数: 164
  • 引用次数: 0
历史
  • 收稿日期:2018-09-05
  • 最后修改日期:2019-12-17
  • 录用日期:2018-11-08
  • 在线发布日期: 2020-03-12