+高级检索
添加碳纳米管对选区激光熔化AlSi10Mg合金缺陷的影响
作者:
作者单位:

1.清华大学材料学院;2.空军工程大学等离子体动力学实验室;3.弗劳恩霍夫激光技术研究所

中图分类号:

TG115.28

基金项目:

国家自然科学基金资助(项目号U1605243),国家磁约束聚变科学计划(项目号2014GB117000)


The Influence of Carbon Nanotubes on Defects in AlSi10Mg alloy fabricated by Selective Laser Melting
Author:
Affiliation:

1.School of Materials Science and Engineering,Tsinghua University;2.Science and Technology on Plasma Dynamics Lab, Air Force Engineering University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    利用选区激光熔化成形技术制备了纯AlSi10Mg合金及碳纳米管(Carbon nanotubes, CNTs)-AlSi10Mg复合材料。当添加CNTs含量为0.05wt.%时具有一定增强效果,但随着CNTs添加量增大,复合材料性能却因为缺陷的增加而明显下降。本文利用纳米CT技术对纯合金及CNTs(0.5wt.%)-AlSi10Mg复合材料进行缺陷的三维重构。结果表明,添加0.5wt.%的CNTs后,成形缺陷体积所占比例由12%增加至46%;气孔型缺陷数量明显增加,并且等效直径相对较大。CNTs在粉体中的团聚及对气体的吸附作用是两种类型缺陷增加的根本原因。

    Abstract:

    Pure AlSi10Mg alloy and Carbon Nanotubes (CNTs)-AlSi10Mg composite with different CNTs addition were fabricated by selective laser melting (SLM). The CNTs-AlSi10Mg composite was strengthened when the CNTs content was lower than 0.05 wt.%. With the increasing CNTs content, however, the strength was decreased significantly because of the poor density. In order to understand the influence of CNTs on the defects in SLMed AlSi10Mg alloy, nano-CT technology was used to get the 3D information of the defects. The results indicated that the volume fraction of large defects(with diameter larger than 50 μm) in the total volume of defects was increased from 12% to 46% in CNTs(0.5wt.%)-AlSi10Mg composite. The number of gas pores in CNTs(0.5wt.%)-AlSi10Mg composite were significantly increased. The diameter of gas pores in CNTs(0.5wt.%)-AlSi10Mg composite were larger than that in pure AlSi10Mg alloy. The agglomeration of CNTs in the powder and gas adsorption are the fundamental reasons for the increase of the two types of defects.

    参考文献
    [1] Read N, Wang W, Essa K et al. Materials Design[J], 2015, 65: 417~424
    [2] Gupta A K, Lloyd D J, Court S A. Materials Science and Engineering: A[J], 2001, 316: 11~17
    [3] Sames W J, List F A, Pannala S et al. International Materials Reviews[J], 2016, 61(5): 315~360
    [4] Aboulkhair N T, Maskery I, Tuck C et al. Materials Design[J], 2016, 104: 174~182
    [5] Kempen K, Thijs L, Van Humbeeck J et al. Physics Procedia[J], 2012, 39: 439~446
    [6] Thijs L, Kempen K, Kruth J P et al. Acta Materialia[J]. Acta Mater., 2013, 61: 1809~1819
    [7] Aboulkhair N T, Everitt N M, Ashcroft I et al. Additive Manufacturing[J], 2014, 1-4: 77~86
    [8] Weingarten C, Buchbinder D, Pirch N et al. Journal of Materials Processing Technology[J], 2015, 221: 112~120
    [9] Chen B, Moon S K, Yao X et al. Scripta Materialia[J], 2017, 141:45~49
    [10] Wei P, Wei Z, Chen Z et al. Applied Surface Science[J], 2017, 408:38~50
    [11] Liu S, Zhu H, Peng G et al. Materials Design[J], 2018, 142: 319~328
    [12] Liu Y L, Liu Z, Jiang Y et al. Journal of Alloys and Compounds[J], 2018, 735: 1414~1421
    [13] Zhan Wenqi(张文奇), Zhu Haihong(朱海红), Hu Zhiheng(胡志恒) et al. Acta Metallurgica Sinica[J], 2017, 53(8): 918~926
    [14] Zhang D Y(张冬云). Chinese Journal of Lasers[J], 2007, 34(12): 1700~1704
    [15] Gu D, Wang H, Dai D, et al. Scripta Materialia[J], 2015, 96: 25~28
    [16] Li X P, Ji G, Chen Z et al. Acta Materialia[J], 2017, 129: 183~193
    [17] Wang Y, Shi J, Lu S et al. Journal of Micro and Nano-Manufacturing[J], 2017, 6(1): 010902~010902-7
    [18] Zhao X, Song B, Fan W, et al. Journal of Alloys and Compounds[J], 2016, 665: 271~281
    [19] Treacy M M J, Ebbesen T W, Gibson J M. Nature[J], 1996, 381: 678~680
    [20] Krishnan A, Dujardin E, Ebbesen T W et al. Physical Review B[J], 1998, 58(20): 14013~14019
    [21] Berber S, Kwon Y K, Tománek D. Physical Review Letters[J], 2000, 84(20): 4613~4616
    [22] Kim P, Shi L, Majumdar A et al. Physical Review Letters[J], 2001, 87(21): 215502~215502-4
    [23] Bakshi S R, Lahiri D, Agarwal A. International Materials Reviews[J], 2010, 55(1): 41~64
    [24] Wan Qian(万谦), Zhao Haidong(赵海东), Zou Chun(邹纯). Acta Metallurgica Sinica[J], 2013, 49(3): 284~290
    [25] Wang S G, Wang S C, Zhang L. Acta Metallurgica Sinica[J], 2013, 49(8): 897~910
    [26] Tammas-Williams S, Zhao H, Léonard F et al. Materials Characterization[J], 2015, 102: 47~61
    [27] Yu Cheng(喻程), Wu Shengchuan(吴圣川), Hu Yanan(胡雅楠) et al. Acta Metallurgica Sinica[J], 2015, 51(2): 159~168
    [28] Zuo Tiechuan(左铁钏). Laser processing of high strength aluminum alloy(高强铝合金的激光加工)[M], Beijing: National Defense Industry Press, 2008: 47
    [29] Jia Xiuhong(贾秀红). Carbon Techniques[J], 2004, 23(3): 25~30
    [30] Geetha R, Gayathri V. Current Nanoscience[J], 2010, 6(2): 131~136
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘西河,赵聪聪,周鑫,刘伟,沈志坚,Florian Eibl, Wilhelm Meiners.添加碳纳米管对选区激光熔化AlSi10Mg合金缺陷的影响[J].稀有金属材料与工程,2019,48(5):1637~1644.[Liu Xihe, Zhao Congcong, Zhou Xin, Liu Wei, Shen Zhijian, Florian Eibl, Wilhelm Meiners. The Influence of Carbon Nanotubes on Defects in AlSi10Mg alloy fabricated by Selective Laser Melting[J]. Rare Metal Materials and Engineering,2019,48(5):1637~1644.]
DOI:10.12442/j. issn.1002-185X.20180998

复制
文章指标
  • 点击次数:1056
  • 下载次数: 1366
  • HTML阅读次数: 147
  • 引用次数: 0
历史
  • 收稿日期:2018-09-28
  • 最后修改日期:2018-10-22
  • 录用日期:2018-11-08
  • 在线发布日期: 2019-06-04