+高级检索
高温合金差示扫描量热分析(DSC)的影响因素研究II:粉末粒度和显微组织
作者:
作者单位:

1.北京航空材料研究院 先进高温结构材料重点实验室;2.Culham Centre for Fusion Energy, Culham Science Centre;3.Department of Materials, University of Oxford;4.Beamline I11, Diamond Light Source

基金项目:

国家重点研发计划(2016YFB0701404);国家科技支撑计划(2015BAE03B01);国家自然科学基金(51304177);国家国际科技合作专项2012DFA50240;重点实验室基金(9140C430202150C43200);英国钻石同步辐射光源Diamond Light Source (EE10597)


Influencing Factors on Differential Scanning Calorimetry (DSC) Analysis of Superalloy II: Particle size and microstructure
Author:
Affiliation:

Science and Technology on Advanced High Temperature structural Materials Laboratory,Beijing Institute of Aeronautical Materials

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    对固溶强化型625镍基高温合金粉末进行升、降温差示扫描量热分析(DSC)试验,研究了<37μm、45-53μm、75-105μm、105-150μm、150-355μm不同粉末粒度对相变温度的影响。采用场发射扫描电镜(FESEM)、电子探针(EPMA)和同步辐射X射线衍射(SXRD)对625合金粉末的形貌、元素分布和相组成进行表征。结果表明:不同粒径PM625粉末均为树枝晶结构,枝晶间距在2~10μm范围,元素 Ni和Cr倾向分布于枝晶干,Mo和Nb偏析于枝晶间。不同粒度的PM625粉末中均仅存在基体γ相。PM625粉末DSC加热曲线固相线附近区域拐点尖锐,表现为合金开始熔化温度(偏离基线的拐点)与名义固相线温度(切线交点)差异很小,不同粒度间的差异仅为2-5℃。合金完全熔化后重新冷却的过程中原始粉末的低偏析特性消失,冷却曲线固相线区域圆弧较大,名义固相线和终凝温度差较大,为53-65℃。DSC试验升温过程中不同粒径粉末的固、液相线以及初熔温度最大差异分别为3℃、2℃和2℃,降温过程不同粒径粉末固、液相线温度差分别为6℃和2℃。0-355μm粉末粒径范围内,粒径对固溶强化型PM625高温合金粉末相变温度无明显影响。

    Abstract:

    Differential scanning calorimeter (DSC) experiments were performed on a solid-solution strengthening Ni-base superalloy 625, considering the effects of the powder particle size (<37μm, 45-53μm, 75-105μm, 105-150μm, 150-355μm) and microstructure on the phase transformation temperature. The alloy powders were characterized by FESEM, EPMA and synchrotron XRD. The results indicate that the dendritic structure is evident in powders with different particle size and the dendritic arm spacing is in the 2-10μm range. Elements Ni and Cr are rich in dendritic core whereas the Mo and Nb tend to distribute in the interdendritic region. Only the matrix γ phase exists in the PM625 powders with different particle size range. The PM625 powders with weak segregation tendency exhibit a sharp inflection point in DSC heating curves in the region near solidus temperature, there is only a 2-5°C gap between the incipient melting temperature of the alloy (deviation from the baseline inflection point) and the nominal solidus temperature (tangent-onset intersection) for different particle size. However, the gaps between the norminal solidus and the end of the solidification temperatures are relative large, which is in 53-65℃ range, in DSC cooling curves, because the low segregation characteristic of original powders has been removed during the full remelting and re-solidified process. The differences in solidus, liquidus and incipient melting temperatures in DSC heating curves are maximum 3℃, 2℃ and 2℃ among different particle size powders, whereas they are 6℃ and 2℃ for the solidus and liquidus temperatures of the alloys in the cooling curves. Therefore, the particle size has minor effect on phase transformation temperature of solid-solution strengthening PM625 alloy powder.

    参考文献
    [1]Sims CT, Stoloff NS, Hagel WC. Superalloys II [M]. NewYork: Wiley-Interscience, 1987
    [2]Reed RC. The superalloys: fundamentals and applications [M]. Cambridge: Cambridge University Press, 2006:122.
    [3]Pollock TM, Tin S. Journal of Propulsion Power[J], 2006, 22: 361
    [4]Craig B. Advanced Materials Processes[J], 2008, 5: 33
    [5]Zheng L, Zhang G, Lee T L et al. Mater Des[J], 2014, 61: 61
    [6]Sawford M, Wojcieszynski A, Carlson RT et al. CORROSION SOLUTIONS? Conference proceedings [C], 2011: 261
    [7]Sun W(孙文), Qin X (秦学智), Guo J (郭建亭). Acta Metall Sin (金属学报) [J], 2016,S52(4):455
    [8]D’Souza N, Dong HB. Scr Mater [J] 2007(56):41
    [9]Heckl A, Rettig R, Cenanovic S et al. J Cryst Growth[J], 2010 (312):2137
    [10]Zhang H(张洪伟), Qin X(秦学智), Li X(李小武)., Acta Metall Sin(金属学报) [J], S2017,S53(6):684
    [11]Zheng Y(郑运荣), Cai Y(蔡玉林). Acta Metall Sin (金属学报) [J], 1980,S16(2):151
    [12]Zhou T, Feng W, Zhao H et al. Prog Nat Sci Mater [J], 2018, 28(1): 45
    [13]Zheng L, Xiao C, Zhang G. Eng Fail Anal [J], 2012 (26): 318
    [14]Zheng Y(郑运荣), Acta Metall Sin (金属学报) [J], 1999,S35(12): 1242
    [15]Chen X(陈晓燕), Zhou Y(周亦胄), Zhang C (张朝威). Acta Metall Sin (金属学报) [J], 2014,S50(8): 1019
    [16]Burton C J, Boesch W J. Met Prog[J], 1975 (5):121
    [17]Zheng Y(郑运荣), Cai Y(蔡玉林), Wang L(王罗宝). Acta Metall Sin (金属学报) [J], 1983,S19(3):190
    [18]Feng Q, Nandy T K, Tin S et al. Acta Mater [J], 2003 (51): 269
    [19]Kearsey R M, Beddoes J C, Jaasalu K M. et al. Superalloys 2004 [C], Pennsylvania: TMS, 2004: 801
    [20]Bai Guanghai(柏广海), Hu Rui(胡锐), Li jinshan(李金山) et al. Rare Met Mater Eng (稀有金属材料与工程) [J], 2011, (10):1737
    [21]Jiao S(焦莎), Zhang J(张军), Jin T(金涛) et al. Rare Met Mater Eng (稀有金属材料与工程) [J], 2013, 42(5): 1028
    [22]Zhou W(周伟), Liu L(刘林), Jie Z(介子奇) et al. Rare Met Mater Eng(稀有金属材料与工程)[J], 2014,43(12):3082
    [23]Fang J(方姣), Liu C(刘琛仄), Liu J(刘军)et al. Chin J Nonferrous Met(中国有色金属学报)[J],2015, 25(12):3352
    [24]Ruan J, Ueshima N, Oikawa K. J Alloys Comp[J], 2018 (737):83
    [25]Zheng Y(郑运荣), Chen H(陈红). J Mater Eng(材料工程)[J], 1985(1): 10
    [26]Sponseller D L. Superalloys 1996 [C]: Pennsylvania: TMS, 259
    [27]Zheng Liang(郑亮), Xiao Chengbo(肖程波),Tang Dingzhong(唐定中) et al. Rare Met Mater Eng(稀有金属材料与工程)[J], 2008 (9): 1539
    [28]Liu G, Liu L, Zhao X et al. Metall Mater Trans A[J], 2011, 42(9): 2733
    [29]Zheng Liang(郑亮), Xiao Chengbo(肖程波), Zhang Guoqing(张国庆) et al. Rare Met Mater Eng(稀有金属材料与工程)[J], 2012 (8): 1457
    [30]Shi Z, Dong J, Zhang M et al. J Alloys Comp[J], 2013(571):168
    [31]Zheng L, Zhang G, Xiao C et al. Scr Mater[J], 2014(74): 84
    [32]Zhou J(周静怡), Zhao W(赵文侠), Zheng Z(郑真). J Mater Eng(材料工程) [J], 2014(8): 90
    [33]Gong L, Chen B, Du Z et al. J Mater Sci Tech[J], 2018, 34(3): 541
    [34]Cantor B, J therm Anal [J], 1994(42):647
    [35]Zheng L(郑亮), Xu W(许文勇), Liu N(刘娜)et al. Rare Met Mater Eng(稀有金属材料与工程) [J], 2018,47(2):530
    [36]Suave L M, Bertheau D, Cormier J. Eurosuperalloy 2014 [C], MATEC Web of Conferences, 14 (2014) 21001, https://doi.org/10.1051/matecconf/20141421001
    [37]Jin K(金凯明), Wang Z(王志刚), Yuan Y(袁英)et al. Chinese Superalloys Handbook(中国高温合金手册)[M]. Beijing: Standards Press of China; 2012:198.
    [38]Li N (李楠), Kong H(孔焕平), Du B(杜博睿) et al. Failure Analysis and Prevention (失效分析与预防) [J], 2016, 11(2): 124
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郑亮,刘玉峰,Gorley Michael J, Hong Zuliang, Day Sarah, Tang Chiu C,李周,张国庆.高温合金差示扫描量热分析(DSC)的影响因素研究II:粉末粒度和显微组织[J].稀有金属材料与工程,2019,48(5):1591~1597.[Zheng Liang, Liu Yufeng, Gorley Michael J, Hong Zuliang, Day Sarah, Tang Chiu C, Li Zhou, Zhang Guoqing. Influencing Factors on Differential Scanning Calorimetry (DSC) Analysis of Superalloy II: Particle size and microstructure[J]. Rare Metal Materials and Engineering,2019,48(5):1591~1597.]
DOI:10.12442/j. issn.1002-185X.20181066

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-10-19
  • 最后修改日期:2018-11-21
  • 录用日期:2018-12-05
  • 在线发布日期: 2019-06-04