+高级检索
基于纳米动力学分析的钛薄膜力学行为和疲劳性能研究
作者单位:

1.哈尔滨工程大学;2.陆军装甲兵学院

基金项目:

国家自然科学基金(51535011, 51705095, 51775554), 国家基础研究计划 (973 项目) (No. 61328303), 黑龙江省博士后科研发展基金 (LBH-Q18036), 黑龙江省自然科学基金联合引导项目(LH2019E031), 中央高校基础研究基金 (HEUCF 3072019CF1010).


Nanoscale Dynamic-Mechanical-Analysis Characterization of the Mechanical Behavior and Fatigue Property for Ti Films
Author:
Affiliation:

1.Institute of Surface/Interface Science and Technology,School of Materials Science and Chemical Engineering,Harbin Engineering University,Harbin Heilongjiang;2.National Key Laboratory for Remanufacturing,Academy of Armored Forces Engineering

Fund Project:

National Natural Science Foundation of China (51535011, 51705095, 51775554), National Basic Research Program of China (973 Program) (No. 61328303), Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province (LBH-Q18036), Natural Science Foundation of Heilongjiang Province (LH2019E031), Fundamental Research Funds for the Central Universities (HEUCF 3072019CF1010).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    利用纳米压痕试验研究了不同厚度钛薄膜的力学行为和疲劳性能。在纳米级动态力学分析的基础上,根据储存刚度的变化定量计算了薄膜的疲劳寿命。结果表明,薄膜的疲劳寿命与残余应力有显著的关系。压痕原位扫描图像显示,薄膜出现明显堆积分层,长裂纹从压头中心向压头边缘垂直延伸。而且,压痕周围积累了大量的应力,纳米级动态加载过程产生了高度局域化的塑性变形和应力释放。薄膜内部的残余压应力将抵消部分载荷应力,提高薄膜的疲劳寿命。

    Abstract:

    The mechanical behavior and the fatigue property of Ti films with different thickness were investigated by nanoindentation test. The fatigue property of the films was quantitatively calculated according to the changes of storage stiffness under the nanoscale dynamic mechanical analysis. The results showed that the fatigue life of the films depends on the residual stress remarkably. In situ scanning images showed the thin film was significantly stacked and layered, and long cracks radiated from the center of the indenter perpendicular to the indenter edge. Additionally, there was a sizable pile up around the indentions which demonstrated that a highly localized plastic deformation and stress release occurred in the process of the nanoscale dynamic loading process. The existence of the internal compressive residual stress will offset part of the load stress to improve the fatigue life of films.

    参考文献
    [1] Xiankun Cao, Tianmin Shao, etc. Micro/Nanotribological and Mechanical Studies of TiN Thin-Film for MEMS Applications. Tribol T, 2004, 47: 227-232.
    [2] Yi Yu, Tian-Ling Ren, etc. High Quality Silicon-Based AlN Thin Films for MEMS Application. Integr Ferroelectr, 2005, 69: 367-374.
    [3] Campanelli LC, Duarte LT, etc. Fatigue behavior of modified surface of Ti-6Al-7Nb and CP-Ti by micro-arc oxidation. Mater Design, 2014, 64: 393-399.
    [4] Skordaris G. Fatigue Strength of Diamond Coating-Substrate Interface Quantified by a Dynamic Simulation of the Inclined Impact Test. J Mater Eng Perform, 2014, 23: 3497-3504.
    [5] Mei-ling Lau, Kin-tak Lau, etc. Measurement of Bovine Bone Properties through Surface Indentation Technique. Mater Manuf Process, 2010, 25: 324-328.
    [6] M Hommel, O Kraft, E Arzt. New Method to Study Cyclic Deformation of Thin Films in Tension and Compression. J Mater Res, 1999, 14 (6): 2373-2376.
    [7] R Schwaiger, O Kraft. High cycle fatigue of thin silver films investigated by dynamic micro beam deflection. Scripta Mater, 1999, 41(8):823-829.
    [8] G. P. Zhang, R. Schwaiger, etc. Effect of film thickness and grain size on fatigue induced dislocation structures in Cu thin films. Philosophical Magazine Letters, 2003, 83, 477-483.
    [9] Z Zong, J Lou, etc. Indentation Size Effects in the Nano and Microhardness of FCC Single Crystal Metals. Mater Manuf Process, 2007, 22: 228-237.
    [10] Chunpeng Lu, Hang Gao, etc. Mechanical Properties of Potassium Dihydrogen Phosphate Single Crystal by the Nanoindentation Technique. Mater Manuf Process, 2010, 25: 740-748.
    [11] BD Beake, GS Fox-Rabinovich, etc. Coating optimisation for high speed machining with advanced nanomechanical test methods. Surf Coat Tech, 2009, 203: 1919-1925.
    [12] Xiaodong Li, Bharat Bhushan. Development of a Nanoscale Fatigue Measurement Technique and Its Application to Ultrathin Amorphous Carbon Coatings. Scripta Mater, 2002, 47: 473-479.
    [13] Liu JN, Xu BS, Wang HD, etc.Measurement for mechanical behavior and fatigue property of Cu films by nanoscale dynamic load method. Mater Design, 2015, 65:1136-1142.
    [14] Chen AY, Bu Y, etc. Deposition-rate Dependence of Orientation Growth and Crystallization of Ti Thin Films Prepared by Magnetron Sputtering. Thin Solid Films, 2015, 574: 71-77.
    [15] Wang AN, Huang JH, etc. Residual stress measurement on TiN thin films by combingnanoindentation and average X-ray strain (AXS) method. Surf Coat Tech, 2015, 280: 43-49.
    [16] Zhu LN, Wang CB, etc. Microstructure and Tribological Properties of WS2/MoS2 Multilayer films. Appl Surf Sci, 2012, 258(6): 1944-1948.
    [17] Jinna Liu, Zhiguo Xing, Hai-douWang, et al. Microstructure and fatigue damage mechanism of FeCoNiAlTiZr high-entropy alloy film by nanoscale dynamic mechanical analysis. Vacuum, 2019, 516-523.
    [18] Hamed Masoumi , Seyed Mohsen Safavi , etc. Effect of Grinding on the Residual Stress and Adhesion Strength of HVOF Thermally Sprayed WC-10Co-4Cr Coating. Mater Manuf Process, 2014, 29: 1139-1151.
    [19] Wang HD, Zhu LN, Xing ZG. The detection technology for surface residual stress. Beijing: China Machine Press, 2013.
    [20] M. Vrbka, I. Kˇrupka, O. ?amánek, P. Svoboda, M. Vaverka, M. Hartl. Effect of Surface Texturing on Lubrication Film Formation. Meccanica, 2011, 46: 491-498.
    [21] Kamegawa Takashi, Masuda Yuki, Suzuki Norihiko, Horiuchi, Yu, Yamashita Hiromi. Design of Single-Site Ti Embedded Highly Hydrophilic Silica Thin Films with Macro-Mesoporous Structures. ACS APPL. MATER. INTERFACES, 2011, 3(12): 4561-4565.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘金娜,王海斗,邢志国,徐滨士,崔秀芳,金国.基于纳米动力学分析的钛薄膜力学行为和疲劳性能研究[J].稀有金属材料与工程,2020,49(6):1938~1945.[Jin-na Liu, Hai-dou Wang, Zhi-guo Xing, Bin-shi Xu, Xiu-fang Cui, Guo Jin. Nanoscale Dynamic-Mechanical-Analysis Characterization of the Mechanical Behavior and Fatigue Property for Ti Films[J]. Rare Metal Materials and Engineering,2020,49(6):1938~1945.]
DOI:10.12442/j. issn.1002-185X.20190203

复制
文章指标
  • 点击次数:852
  • 下载次数: 1318
  • HTML阅读次数: 166
  • 引用次数: 0
历史
  • 收稿日期:2019-03-13
  • 最后修改日期:2019-06-24
  • 录用日期:2019-06-24
  • 在线发布日期: 2020-07-09