+高级检索
Co-Cu-Zn三元系相平衡的实验研究
作者单位:

厦门大学材料学院

中图分类号:

TG111.3

基金项目:

液相分离型Al基水解制氢复合粉体的设计、制备及其性能研究;仿生复杂结构增材制造的基础研究


Study of Phase equilibria in the Cu-Co-Zn ternary system
Author:
Affiliation:

College of Materials. Xiamen University

Fund Project:

National Natural Science Foundation of China;Joint Fund to Promote Cross-Strait Scientific and Technological Cooperation

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    本实验通过采用电子探针显微分析和X-ray衍射分析方法实验研究了Co-Cu-Zn三元体系在800°C和1000°C时的相平衡。在这两个等温截面中均未发现三元化合物。在800°C等温截面,Co在β-CuZn相中的固溶度为32.36%,Cu在β1-CoZn相中的固溶度为5.28%。除此之外,γ-Co5Zn21和γ-Cu5Zn8具有相同的晶体结构,因此,它们之间形成了一个贯穿连续固溶体相。1000°C的等温截面中,β-CuZn相、β1-CoZn相、γ-Co5Zn21相、γ-Cu5Zn8相都消失了。随着温度从800°C上升到1000°C,液相区域增大。

    Abstract:

    The phase equilibria of the Cu-Co-Zn ternary system at 800°C and 1000°C were investigated by means of electron probe microanalysis and X-ray diffraction. No ternary compound was found. At 800°C, the solubility of Co in the β-CuZn, and Cu in the β1-CoZn at 800°C were 32.36 at.% and 5.28 at.%, respectively. The γ-Co5Zn21 and γ-Cu5Zn8 showed the same crystal structure, an infinite region of mutual solubility was observed in the Cu-Co-Zn ternary system. It was confirmed that as the temperature rises from 800°C to 1000°C, the liquid-phase region was further expanded. The isothermal section of 1000oC was simple. The phase of β-CuZn, β1-CoZn, γ-Co5Zn21 and γ-Cu5Zn8 was disappeared. The region of liquid phase is very large.

    参考文献
    Wu J, Xue S B, Wang J W, et al. Journal of Materials Science: Materials in Electronics[J], 2016, 27(12):12729-12763
    El-Daly A A , Radwan N, Abo El-Eizz H M, et al. Journal of Materials Science: Materials in Electronics[J], 2015, 26(11):8807-8818
    Huang Y C, Chen S W. Co Journal of Materials Research[J], 2010, 25, 2430-2438
    NISHIZAWA T, ISHIDA K. Bulletin of Alloy Phase Diagrams[J], 1984, 5(2): 161-5
    Effenberg G. Landolt-B?rnstein-Group IV Physical Chemistry[J], 2006, 11b:1-15
    OKAMOTO H. Journal of Phase Equilibria Diffusion[J], 2006, 27(3): 311-331
    Pattanaik G R, KASHYAP S C, PANDYA D K. Journal of Magnetism Magnetic Materials[J], 2000, 219(3): 309-16
    KUBI?TA J, V?E?T L J. Journal of phase equilibria[J], 2000, 21(2): 125
    Cao C D, LETZIG T, G RLER G P, et al. Journal of Alloys Compounds[J], 2001, 325(1–2): 113-7
    Spencer P J. Calphad-computer Coupling of Phase Diagrams Thermochemistry[J], 1986, 10(2): 175-85
    Kowalski M, SPENCER P J. Journal of Phase Equilibria[J], 1993, 14(4): 432-8
    David N, FIORANI J M, VILASI M, et al. Journal of Phase Equilibria[J], 2003, 24(3): 240-8
    Chen W G S. Journal of Materials Research[J], 2008, 23(1): 258-63
    Wang J, Xu H, Shang S, et al. Calphad-computer Coupling of Phase Diagrams Thermochemistry[J], 2011, 35(2): 191-203
    Du Y, He C Y, Chen H L, et al. Metallurgical Materials Transactions A[J], 2009, 24(10):3154-3164.
    cStraumal B B, Kogtenkova O A, Straumal A B, et al. Journal of Materials Science[J], 2010, 45(16):4271-4275.
    Vassiley G P, Jiang M. Journal of Phase Equilibria and Diffusion[J], 2004, 25(3):259-268.
    Xie W, Miller G J. Cheminform[J], 2014, 45(28): 2624-34.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王翠萍,吴超,邓育灵,张锦彬,杨木金,杨水源,韩佳甲,卢勇,刘兴军. Co-Cu-Zn三元系相平衡的实验研究[J].稀有金属材料与工程,2020,49(7):2269~2274.[wangcuiping, wuchao, dengyuling, zhangjinbin, yangmujin, yangshuiyuan, hanjiajia, luyong, liuxingjun. Study of Phase equilibria in the Cu-Co-Zn ternary system[J]. Rare Metal Materials and Engineering,2020,49(7):2269~2274.]
DOI:10.12442/j. issn.1002-185X.20190296

复制
文章指标
  • 点击次数:781
  • 下载次数: 1181
  • HTML阅读次数: 163
  • 引用次数: 0
历史
  • 收稿日期:2019-04-07
  • 最后修改日期:2019-04-30
  • 录用日期:2019-05-15
  • 在线发布日期: 2020-08-31