+高级检索
燃烧反应制备Y2-xGdxTi2O7 烧绿石及其作为核废物固化材料的稳定性研究
作者单位:

1.西南科技大学;2.中国工程物理研究院

中图分类号:

TM286

基金项目:

国家自然科学基金 (No. 51672228)


Combustion reaction synthesis of Y2-xGdxTi2O7 pyrochlores and its aqueous durability as nuclear waste mateiral
Author:
Affiliation:

1.State Key Laboratory of Environment-friendly Energy Materials,Southwest University of Science and Technology,Mianyang;2.Institute of Nuclear Physics and Chemistry,China Academy of Engineering Physics

Fund Project:

National Natural Science Foundation of China (No. 51672228)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    烧绿石基陶瓷材料是理想的核废物固化基材,本研究采用燃烧反应结合快速加压工艺,以CuO 为氧化剂、Ti为还原剂,在5分钟内快速制备出烧绿石基 Y2-xGdxTi2O7/Cu复合材料固化体。以Gd作为三价锕系核素的模拟物,设计Gd取代Y2-xGdxTi2O7烧绿石中的Y位。研究结果表明,Gd能完全取代Y位形成Gd2Ti2O7 烧绿石,所得产物没有杂质相的出现,且在烧绿石基体中没有出现相分离现象。选择Gd1.0样品进行浸出实验,结果表明该样品具有优异的水热稳定性,Cu, Y 和 Gd 元素的42天归一化浸出率分别低至 2.4×10-2, 1.1×10-5和5.3×10-6 g?m-2?d-1

    Abstract:

    Pyrochlore-based ceramic is recognized as promising nuclear waste matrice. In this study, pyrochlore-based Y2-xGdxTi2O7/Cu composite waste forms were rapidly prepared within 5 minutes by combustion reaction plus quick pressing (CR/QP) synthesis route, where CuO was utilized as the oxidant and Ti as the reductant. As the surrogate of trivalent actinide nuclides, Gd was introduced to substitute the Y site with nominal formulation of Y2-xGdxTi2O7. The results demonstrate that Gd can totally replace the Y site and Gd2Ti2O7 pyrochlore can be readily synthesized. There is no impurity phase generated in the products, and phase separation is not detected in the pyrochlore matrix. The selected Gd1.0 waste form exhibits promising aqueous durability as the 42 days normalized leaching rates of Cu, Y and Gd elements are evaluated as low as 2.4×10-2, 1.1×10-5 and 5.3×10-6 g.m-2.d-1.

    参考文献
    1 International Atomic Energy Agency, Design and Operation of High Level Waste. Vitrification and Storage Facility, Technical report series No.176, IAEA, Vienna,1977.
    2 Ojovan MI, Lee WE. An Introduction to Nuclear Waste Immobilization. Oxford, UK: Elsevier Ltd; 2005: 213-267.
    3 Weber WJ, Navrotsky A, Stefanovsky S, et al.MRS Bulletin[J], 2009,34:46.
    4 Caurant D, Loiseau P, Majèrus O, et al. Glasses, glass-ceramics and ceramics for immobilization of highly radioactive nuclear wastes. New York, NY: Nova Science Publishers, 2009.
    5 Ringwood AE, Kesson SE, Ware NG, et al.Nature[J],1979,278:219.
    6 Matzke HJ, Ray ILF,SSeatonberry BW,Set al.Journal of the American Ceramic Society[J],1990;73:370.
    7 Lee WE, Gilbert M, Murphy ST, et al. Journal of the American Ceramic Society[J],2013,96:2005.
    8 Lumpkin GR, Hart KP, McGlinn PJ, et al.Radiochimica Acta[J],1994,66-67:469.
    9 Wang SX, Wang LM, Ewing RC, et al.Nuclear Instruments Methods in Physics Research Section B. [J],1999,148:704.
    10 Zhang KB, Yin D, Han PW, Zhang HB,International Journal of Applied Ceramic Technology[J],2018,15:171.
    11 Weber WJ, Ewing RC.Science [J],2000,289:2051.
    12 Ewing RC, Weber WJ, Lutze W, et al. Disposal of Weapon Plutonium, Kluwer, Boston, 1996, pp. 65-83.
    13. Chakoumakos BC. Journal of SolidSStateSChemistry[J], 1984, 53: 120.
    14 Lian J, Ewing RC, Farmer JM, et al.Physical Review B[J], 2003,68:134107.
    15 Ewing RC, Weber WJ, Lian J.Journal Applied Physics[J] 2004,95:5949.
    16 Sykora RE, Raison PE, Haire RG.Journal of SolidSStateSChemistry[J]2005,178:578.
    17 Sattonnay G, Grygiel C, Monnet I, et al.Acta Materialia [J]2012, 60:22.
    18 Minervini L, Grimes RW, Sickafus KE.Journal of the American Ceramic Society[J],2000,83:1873.
    19 Su S, Ding Y, Shu X, et al.Journal of the European Ceramic Society[J],2014,35:1847.
    20 Mandal BP, Tyagi AK.Materials Science and Engineering B [J] 2007,136:46.
    21 Roberts SK, Bourcier WL, Shaw HF.Radiochemica Acta [J], 2000,88:539.
    22 Muthuraman M, Patil KC, Senbagaraman S, et al. Materials Research Bulletin[J],1996, 31:1375.
    23 Zhang KB, Yin D, Peng L, Wu JJ.Cerammics International [J], 2017,43:1415.
    24 Zhang KB, Wen GJ, Zhang HB, et al.Journal of Nuclear Materials[J],2015,465:1.
    25 Peng L,SZhang KB, He ZS, et al.Journal of Advanced Ceramics[J], 2018,7:41.
    26 Zhang KB, He ZS, Xue JL, et al.Journal of Nuclear Materials[J],2018,507:93.
    27 Zhang KB, He ZS,SPeng L,Set al.Scripta Materialia[J],2018, 146:300.
    28 He ZS,SZhang KB,SXue JL,SZhao WW,SZhang HB. Journal of Nuclear Materials[J],2018,512:385.
    29 Seaborg GT. Radiochimca Acta[J], 1993,61:115.
    30 Emsley J. The Elements, Clarendon Press (Ed.). Oxford, 1992.
    31 Smith KL, Lumpkin GR, Blackford MG, et al. Journal of Nuclear Materials[J],1992,190:287.
    32 ASTM C1220-98. Standard Test Method for Static Leaching of Monolithic Wasteforms for Disposal of Radioactive Waste. ASTM Int. 1998:1-16.
    33 Poinssot C, Gin S.Journal of Nuclear Materials[J],2012,420:182.
    34 Zhang Y, Stewart MWA, Li H, et al. Journal of Nuclear Materials[J],2009, 395:69.
    35 Donald IW, Metcalfe BL, Taylor RNJ. Journal of Materials Science[J],1997,32:5851.
    相似文献
    引证文献
引用本文

张魁宝,李伟伟,谢达雁,骆宝珠,张海斌.燃烧反应制备Y2-xGdxTi2O7 烧绿石及其作为核废物固化材料的稳定性研究[J].稀有金属材料与工程,2020,49(7):2299~2304.[Kuibao Zhang, Weiwei Li, Dayan Xie, Baozhu Luo, Haibin Zhang. Combustion reaction synthesis of Y2-xGdxTi2O7 pyrochlores and its aqueous durability as nuclear waste mateiral[J]. Rare Metal Materials and Engineering,2020,49(7):2299~2304.]
DOI:10.12442/j. issn.1002-185X.20190354

复制
文章指标
  • 点击次数:876
  • 下载次数: 1379
  • HTML阅读次数: 162
  • 引用次数: 0
历史
  • 收稿日期:2019-04-25
  • 最后修改日期:2019-05-22
  • 录用日期:2019-05-29
  • 在线发布日期: 2020-08-31