+高级检索
20辊轧机轧制宽幅工业纯钛带的变形行为研究
作者:
作者单位:

1.北京科技大学;2.湖南湘投金天钛金属股份有限公司

基金项目:

国家自然科学基金资助(项目号51674028)广西创新驱动发展专项资金项目(桂科AA17202008)中央高校基本科研业务费专项资金资助项目(RFR-NP-18-006)


Modeling and Simulation of Wide Commercial Pure Titanium Strip Rolling on Sendzimir 20-high Mill
Author:
Affiliation:

1.University of Science and Technology Beijing;2.Hunan Xiangtou Goldsky Titanium Metal Co,Ltd

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [18]
  • | | |
  • 文章评论
    摘要:

    国内某厂森吉米尔20辊轧机在轧制宽幅工业纯钛带时二肋浪形问题频繁发生且不易调控,为了掌握现有板形调控手段的调控规律,以期达到提供合理调控策略来解决二肋浪形问题的目的,基于ABAQUS有限元软件,考虑了钛金属的各向异性力学特点,建立了可实现工作辊与轧件动态轧制过程的20辊轧机辊系-轧件一体化模型,并利用实际轧制数据对模型计算精度进行了验证。同时,利用该模型对20辊轧机轧制宽幅工业纯钛带的单一以及组合板形调控特性进行了仿真研究,结果表明:支承辊1#与7#、2#与6#对称位置分段压下与一中间锥辊窜辊组合调节时,随着窜辊量的增加,距边部75-300 mm区域厚度减薄最为显著,将导致或加剧该区域的二肋浪形;3#与5#、4#对称位置分段压下与一中间锥辊窜辊组合调节后,对缓解二肋浪形问题具有一定作用;此外,还发现一中间锥辊窜辊调节无法解决二肋浪形问题。最后,结合20辊轧机板形调控特性,提出了一种能够减小二肋浪形区的压应力的分段压下组合方案,工业实验证明分段压下组合方案实施后二肋浪形区压应力下降60%,有效缓解了20辊轧机轧制宽幅钛带时的二肋浪形缺陷及程度。

    Abstract:

    In order to grasp the regulation law of existing shape control means and to provide reasonable control strategy to solve the problem of double-rib wave, the problem of double-rib wave occurred frequently and was difficult to control when Sendzimir 20-high rolling mill rolled wide industrial pure titanium strip,Based on ABAQUS finite element software and considering the anisotropic mechanical characteristics of commercial pure titanium strip rolling, an integrated roller-strip model of 20-high rolling mill for realizing the dynamic rolling process of work roll and strip was established., and the calculation accuracy of the model is verified by the actual industrial rolling data. The model is used to simulate the single and combined shape control characteristics of wide industrial pure titanium strip rolled by 20-high rolling mill. The results show that the thickness of 75-300 mm from the edge decreases most significantly with the increase of roll channeling when the backup roll 1 # and 7 #, 2 # and 6 #symmetrical position subsection pressing is combined with the middle cone roll channeling roll, which will lead to or aggravate the double-rib wave; the combination of 3 # and 5 #, 4 # symmetrical position subsection pressing and the middle cone roll channeling can alleviate the problem of the two rib waveform, and it is also found that the adjustment of the middle cone roll channeling can not solve the problem of the double-rib wave.Finally, combined with the shape control characteristics of 20-high rolling mill, a piecewise reduction combination scheme is proposed, which can reduce the compressive stress in the double-rib wave zone,Industrial experiments show that the compressive stress in the double-rib wave zone decreases by 60% after the implementation of the piecewise reduction combination scheme, which effectively alleviates the double-rib wave defects when rolling wide titanium strip on 20-high rolling mill.#$NLKeywords: sendzimir 20-high mill; wide commercial pure titanium strip; high-order buckle; finite element; shape control characteristics;

    参考文献
    [1] Roodposhti P S, Farahbakhsh N, Sarkar A, et al. Microstructural approach to equal channel angular processing of commercially pure titanium-A review. Transactions of Nonferrous Metals Society of China [J] , 2015, 25(5):1353-1366.
    [2] Liu D K, Huang G S, Gong G L, et al. Influence of different rolling routes on mechanical anisotropy and formability of commercially pure titanium sheet. Transactions of Nonferrous Metals Society of China[J], 2017, 27(6):1306-1312.
    [3] Sahoo S K, Sabat R K, Sahni S, et al. Texture and microstructure evolution of commercially pure titanium during hot rolling: Role of strain-paths. Materials Design[J], 2016, 91:58-71.
    [4]Roth A, Lebyodkin M A, Lebedkina T A, et al. Mechanisms of anisotropy of mechanical properties of α-titanium in tension conditions. Materials Science Engineering A[J], 2014, 596:236-243.
    [5] Yi N, Hama T, Kobuki A, et al. Anisotropic deformation behavior under various strain paths in commercially pure titanium Grade 1 and Grade 2 sheets. Materials Science Engineering A[J], 2016, 655:70-85.
    [6]祝新民, 冯光宏, 张宏亮. 纯钛带冷轧起筋缺陷分析. 热加工工艺[J], 2014(19):227-230.
    [7]史亚鸣, 李志敏, 曹占元, 等. 钛带在带钢连续退火炉内张应力横向分布仿真[J]. 中国冶金, 2017,27(9):25-30.
    [8]Hara K , Yamada T , Takagi K . Shape Controllability for Quarter Buckles of Strip in 20-high Sendzimir Mills. ISIJ International[J], 1991, 31(6):607-613.
    [9]Kim J T , Yi J J , Han S Y . Shape control of alloy steel rolled by sendzimir mill. Journal of Mechanical Science and Technology[J], 1996, 10(3):277-285.
    [10]Yu H , Liu X , Lee G T . Contact element method with two relative coordinates and its application to prediction of strip profile of a sendzimir mill. ISIJ International[J], 2007, 47(7):996-1005.
    [11]张连军, 张清东, 于孟. 20辊森吉米尔轧机板形调控性能研究. 冶金设备[J], 2008(1):40-43.
    [12]王崇涛. 森吉米尔轧机板形控制的研究[D]. 武汉科技大学, 2003.
    [13]张清东, 代畅, 文杰, 等. 二十辊森吉米尔轧机板形调控性能仿真研究. 轧钢[J], 2013, 30(3):1-6.
    [14]Li H , Zhao Z , Dong D , et al. Edge-Drop Control Behavior for Silicon Strip Cold Rolling with a Sendzimir Mill. Metals[J], 2018, 8(10):783.
    [15]Hill R A . A Theory of the Yielding and Plastic Flow of Anisotropic Metals. Proceedings of The Royal Society A[J], 1948, 193(1033):281-297.
    [16]刘彦娟. 金属薄板的各向异性及其对成形过程的影响[D]. 燕山大学, 2005.
    [17]徐丹. 各向异性屈服准则及其在汽车覆盖件中的应用[D]. 华中科技大学, 2007.
    [18]闫冬. 森吉米尔20辊轧机板形控制特性研究[D]. 燕山大学, 2011.
    [19] Wang L , Zhang H , Huang G , et al. Formability and anisotropy of the mechanical properties in commercially pure titanium after various routes normal and different speed rolling. Journal of Materials Research[J], 2016, 31(21):3372-3380.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周冠禹,何安瑞,刘超,周明伟,秦剑,刘正乔.20辊轧机轧制宽幅工业纯钛带的变形行为研究[J].稀有金属材料与工程,2020,49(7):2333~2339.[Zhou Guanyu, He Anrui, Liu Chao, Zhou Mingwei, Qin Jian, Liu Zhengqiao. Modeling and Simulation of Wide Commercial Pure Titanium Strip Rolling on Sendzimir 20-high Mill[J]. Rare Metal Materials and Engineering,2020,49(7):2333~2339.]
DOI:10.12442/j. issn.1002-185X.20190491

复制
文章指标
  • 点击次数:1037
  • 下载次数: 1192
  • HTML阅读次数: 175
  • 引用次数: 0
历史
  • 收稿日期:2019-06-10
  • 最后修改日期:2019-07-31
  • 录用日期:2019-08-21
  • 在线发布日期: 2020-08-31