+高级检索
等离子蒸发沉积热障涂层抗CMAS附着研究进展
作者:
作者单位:

航天特种材料及工艺技术研究所

作者简介:

通讯作者:

中图分类号:

基金项目:


Research Status on Plasma Spray-Physical Vapor Deposited Thermal Barrier Coatings against the Adhesion of Molten CMAS Deposits
Author:
Affiliation:

1.Aerospace Institute of Advanced Materials & Processing Technology;2.Aerospace Institute of Advanced Materials & Processing Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    热障涂层是先进航空发动机核心热端部件高压涡轮叶片的关键技术,随着发动机服役温度的不断提高,一种主要化学成分为CaO-MgO-Al2O3-SiO2(简称CMAS)的环境沉积物对叶片的危害日益严重,不仅堵塞叶片表面气膜冷却孔,影响叶片冷效,而且导致热障涂层早期剥落失效,服役寿命大幅度降低。高温熔融CMAS在涂层表面的附着过程及防护方法是目前热障涂层研究领域的热点和难点。本文针对新型的等离子蒸发沉积技术,梳理了近年来国内外学者在热障涂层抗CMAS附着、渗入和腐蚀方面的最新研究成果,指出了涂层抗CMAS侵蚀研究的发展方向。

    Abstract:

    Due to the increasing demand for higher operating temperatures in gas turbine engines, a reliability problem has emerged on TBCs by the attack of calcium-magnesium-alumino-silicate (CMAS) deposits. These contaminants yield glassy melts adhering to the TBC surface at high temperatures, followed by infiltrating and interacting into/with TBC, which result in its severe degradation and premature failure. The adhesion of molten CMAS and the protection methods are hot and difficult points in the field of thermal barrier coatings. In this paper, the latest research results on CMAS adhesion, infiltration and corrosion resistance of plasma spray-physical vapor deposited thermal barrier coatings are reviewed. The approaches for developing corrosion-resistant TBCs were proposed.

    参考文献
    相似文献
    引证文献
引用本文

张宝鹏,于新民,刘伟,霍鹏飞,金鑫.等离子蒸发沉积热障涂层抗CMAS附着研究进展[J].稀有金属材料与工程,2020,49(10):3646~3652.[Zhang Baopeng, Yu Xinmin, Liu Wei, Huo Pengfei, Jin Xin. Research Status on Plasma Spray-Physical Vapor Deposited Thermal Barrier Coatings against the Adhesion of Molten CMAS Deposits[J]. Rare Metal Materials and Engineering,2020,49(10):3646~3652.]
DOI:10.12442/j. issn.1002-185X.20190881

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-10-25
  • 最后修改日期:2019-12-31
  • 录用日期:2020-01-03
  • 在线发布日期: 2020-11-04
  • 出版日期: