+高级检索
铸态TB6钛合金热变形过程中应力诱发马氏体相变
作者单位:

南昌航空大学

基金项目:

National Natural Science Foundation of China (51761029, 51864035), and the Educational Committee of Jiangxi Province of china (GJJ160683)


Stress induced martensitic transformation of as-cast TB6 titanium alloy during hot process
Author:
Affiliation:

Nanchang Hangkong University

Fund Project:

National Natural Science Foundation of China (51761029, 51864035), and the Educational Committee of Jiangxi Province of china (GJJ160683)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    对铸态TB6钛合金进行了恒应变速率热模拟压缩试验(变形温度为800~1150 ℃、应变速率为0.001~10 s-1),研究了合金微观组织演变和应力诱导马氏体(SIM)相变。结果表明,该合金在热变形过程中出现了具有枝晶形态的正交结构SIM。SIM在β晶内和晶界形核。应变速率和变形温度控制合金成分均匀性和内应力,是SIM析出量的主要影响因素。不同应变速率的SIM析出量与变形温度范围有关。SIM析出量较高变形条件为:在800~900 ℃时应变速率为0.1 s-1,900~1000 ℃时应变速率为0.01和1 s-1,在1000 ℃以上时应变速率为1 s-1。在变形温度925 ℃、应变速率1 s-1时SIM析出量达最大化为50%。

    Abstract:

    Hot compression tests of as-cast TB6 titanium alloy were performed at the temperature of 800-1150°C and the strain rate range of 0.001-10s?1 to examine microstructure evolution associated with stress induced martensite (SIM). The results reveal the occurrence of the SIM with the dendritic morphology in present alloy during hot compression process. The orthorhombic structure of SIM was confirmed for the alloy. It was found that the SIM nucleates both in the β grain interior and at grain boundary. TheSalloy composition uniformity and internal stress are strongly dominated by strain rate and deformation temperature, which is responsible for the amounts of SIM. The content of SIM at different strain rate is related to the temperature ranges. More contents of SIM appear at the strain rate of 0.1s-1 for the temperature of 800℃~900℃, at 0.01s-1 and 1s-1 for the temperature of 900℃~1000℃, at the strain rate of 1s-1 for the temperature of above 1000℃. 50% martensite can be obtained at an optimal combination of the temperature of 925℃ and the strain rate range of 1s-1.

    参考文献
    [1] Chen W, Sun Q, Xiao L. Deformation-Induced Grain Refinement and Amorphization in Ti-10V-2Fe-3Al Alloy[J]. Metallurgical Materials Transactions A. 2012, 43(1): 316-326.
    [2] Liu W, Ao S, Li Y, et al. Effect of Anodic Behavior on Electrochemical Machining of TB6 Titanium Alloy[J]. Electrochimica Acta. 2017, 233: 190-200.
    [3] Zhao J, Zhong J, Yan F, et al. Deformation behaviour and mechanisms during hot compression at supertransus temperatures in Ti-10V-2Fe-3Al[J]. Journal of Alloys and Compounds. 2017, 710: 616-627.
    [4] Ma X, Li F, Cao J, et al. Strain rate effects on tensile deformation behaviors of Ti-10V-2Fe-3Al alloy undergoing stress-induced martensitic transformation[J]. Materials Science and Engineering: A. 2018, 710: 1-9.
    [5] Pan Y, Sun Q, Xiao L, et al. Plastic deformation behavior and microscopic mechanism of metastable Ti-10V-2Fe-3Al alloy single crystal pillars orientated to <011>β in submicron scales Part I: Double size effects and martensitic transformation prediction[J]. Materials Science and Engineering: A. 2019, 743: 798-803.
    [6] Bai X, Zhao Y, Zeng W, et al. Effect of Compressing Deformation on the Crystal Structure of Stress-Induced Martensitic in Ti-10V-2Fe-3Al Titanium Alloy[J]. Rare Metal Materials and Engineering. 2014, 43(8): 1850-1854.
    [7] Bhattacharjee A, Bhargava S, Varma V K, et al. Effect of β grain size on stress induced martensitic transformation in β solution treated Ti–10V–2Fe–3Al alloy[J]. Scripta Materialia. 2005, 53(2): 195-200.
    [8] Bhattacharjee A, Varma V, Kamat S, et al. Influence of β grain size on tensile behavior and ductile fracture toughness of titanium alloy Ti-10V-2Fe-3Al[J]. Metallurgical and Materials Transactions A. 2006, 37(5): 1423-1433.
    [9] Neelakantan S, Galindo-Nava E I, San Martin D, et al. Modelling and design of stress-induced martensite formation in metastable β Ti alloys[J]. Materials Science and Engineering: A. 2014, 590: 140-146.
    [10] Duerig T W, Albrecht J, Richter D, et al. Formation and reversion of stress induced martensite in Ti-10V-2Fe-3Al[J]. Acta Metallurgica. 1982, 30(12): 2161-2172.
    [11] Srinivasu G, Natraj Y, Bhattacharjee A, et al. Tensile and fracture toughness of high strength β Titanium alloy, Ti–10V–2Fe–3Al, as a function of rolling and solution treatment temperatures[J]. Materials Design. 2013, 47(47): 323-330.
    [12] Margevicius R W, Cotton J D. Stress-assisted transformation in Ti-60 wt pct Ta alloys[J]. Metallurgical and Materials Transactions A. 1998, 29(1): 139-147.
    [13] Zafari A, Xia K. Stress induced martensitic transformation in metastable β Ti-5Al-5Mo-5V-3Cr alloy: Triggering stress and interaction with deformation bands[J]. Materials Science Engineering A. 2018, 724: 75-79.
    [14] Grujicic M, Zhang Y. Crystal plasticity analysis of stress–assisted martensitic transformation in Ti–10V–2Fe–3Al (wt.%)[J]. Journal of Materials Science. 2000, 35(18): 4635-4647.
    [15] Kim H, Lim S, Yeo I, et al. Stress-induced martensitic transformation of metastable β-titanium alloy[J]. Materials Science Engineering A. 2007, 449(1): 322-325.
    [16] Chang L L, Liu J P. Stress Induced Martensitic Transformation in Ti-1023 Alloys[J]. Materials Science Forum. 2016, 849: 219-225.
    [17] Qi L, Qiao X, Huang L, et al. Effect of structural stability on the stress induced martensitic transformation in Ti-10V-2Fe-3Al alloy[J]. Materials Science and Engineering: A. 2019, 756: 381-388.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

欧阳德来.铸态TB6钛合金热变形过程中应力诱发马氏体相变[J].稀有金属材料与工程,2020,49(11):3776~3781.[ouyangdelai. Stress induced martensitic transformation of as-cast TB6 titanium alloy during hot process[J]. Rare Metal Materials and Engineering,2020,49(11):3776~3781.]
DOI:10.12442/j. issn.1002-185X.20190908

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-11-02
  • 最后修改日期:2019-12-20
  • 录用日期:2020-01-03
  • 在线发布日期: 2020-12-09