+高级检索
高导热金刚石/铜复合材料的导热研究进展
作者:
作者单位:

南京航空航天大学 直升机传动技术重点实验室

基金项目:

National Key Laboratory of Science and Technology on Helicopter Transmission (No. HTL-O-19G09)


Progress in Heat conduction of Diamond/Cu Composites with High thermal conductivity
Author:
Affiliation:

National Key Laboratory of Science and Technology on Helicopter Transmission,Nanjing University of Aeronautics and Astronautics

Fund Project:

National Key Laboratory of Science and Technology on Helicopter Transmission (No. HTL-O-19G09).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [70]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    金刚石/铜复合材料具有密度低、热导率高及热膨胀系数可调等优点,且与新一代芯片具有良好的热匹配性能,因此其在高热流密度电子封装领域具有非常广泛的应用前景。然而由于金刚石与铜界面润湿性差,界面热阻高,导致材料热导率比铜还低,限制了其应用。为了改善其界面润湿性,国内外通过在金刚石表面金属化或对铜基体预合金化等手段来修饰复合材料界面,以提高金刚石/铜复合材料的热导率。本文综述了表面改性、导热模型相关的界面理论以及有限元模拟的研究进展,讨论了制备工艺、导热模型和未来发展的关键方向,总结了金刚石添加量、颗粒尺寸等制备参数对其微观组织结构和导热性能的影响规律。

    Abstract:

    Diamond/Cu composites have advantages of low density, high thermal conductivity and tailorable coefficient of thermal expansion (CTE), and possess a good thermal matching performance with new generation chips. Therefore, it has a widespread application prospect in electronic packaging with high heat flux density and other fields. However, due to the poor wettability between diamond and Cu as well as high interfacial thermal resistance, bringing about the conductivity of composite is even lower than copper, which restricts its application. The interface of composite is modified to transform their mechanical and physical bonding state into a chemical and metallurgical bonding by pre-metallization, pre-alloying copper matrix and optimization of composite processing so as to improve wettability at home and abroad nowadays. In this paper, surface modification, interface theory related to thermal conducting model and research development in finite element simulation are reviewed. The difficulties of fabricated process, thermal conducting models, and key direction of future development are discussed. The effects of parameters such as diamond content and particle size on microstructure and thermal conducting performance are summarized.

    参考文献
    1Zhang Chao, Zhang Yang, Liu Na, Zhu Guofeng. Advanced Forming Technology for the High Thermally Conductive Al/Diamond Composites and Its Heat Conducting-Spreading Components [J]. Metals World, 2015(02):69-74.
    2Somiya K, Collaboration L. Detector configuration of LCGT - the Japanese cryogenic gravitational-wave detector [J]. Classical Quantum Gravity, 2011, 29(12):124007-124018(12).
    3Ganija M, Ottaway D, Veitch P, et al. Cryogenic, high power, near diffraction limited, Yb:YAG slab laser[J]. Optics Express, 2013, 21(6):6973-6978.
    4Nosaeva K , Al-Sawaf T , John W , et al. Multifinger Indium Phosphide Double-Heterostructure Transistor Circuit Technology With Integrated Diamond Heat Sink Layer[J]. IEEE Transactions on Electron Devices, 2016, 63(5):1-7.
    5Azmi K, Derman M N , Al Bakri A M M, et al. Cu-SiCp Composites as Advanced Electronic Packaging Materials[J]. Key Engineering Materials, 2014, 594-595(2014):852-856.
    6Mallik S , Ekere N , Best C , et al. Investigation of thermal management materials for automotive electronic control units[J]. Applied Thermal Engineering, 2011, 31(2-3):355-362.
    7Yoshida K, Morigami H. Thermal properties of diamond/copper composite material [J]. Microelectronics Reliability, 2004, 44(2):303-308.
    8Weber L, Tavangar R. On the influence of active element content on the thermal conductivity and thermal expansion of Cu–X (X = Cr, B) diamond composites [J]. Scripta Materialia, 2007, 57(11):988-991.
    9Ren S, Shen X, Guo C, et al. Effect of coating on the microstructure and thermal conductivities of diamond–Cu composites prepared by powder metallurgy [J]. Composites Science Technology, 2011, 71(13):1550-1555.
    10Chen N, Pan X F, Gu M Y. Microstructure and physical properties of Al/diamond composite fabricated by pressureless infiltration [J]. Materials Science and Technology, 2009, 25(3):400-402.
    11Kerns J A, Colella N J, Makowiecki D, et al. Dymalloy: A Composite Substrate for High Power Density Electronic Components[C, Microelectronics, 1995.
    12Ciupiński, L, Siemiaszko D, Rosiński, M, et al. Heat Sink Materials Processing by Pulse Plasma Sintering [J]. Advanced Materials Research, 2009, 59:120-124.
    13Chen Hui, Jia Chengchang, Liu Zhaofang, et al. Thermal conductivity of SPS Consolidated Diamond/Cu Composites with Cr-coated Diamond Particles[C]. The Chinese Society for Metals.2009:6.
    14Chen Hui, Li Shangjie,Jia Chengchang, e tal. The influence of diamond grain size on the diamond-copper composite properties prepared by high temperature and high pressure[C]. Chinese Society for Composites Materials, 2010:5.
    15Deng Jiali, Zhang Hongdi, Fan tongxiang, et al. Recent progress on interface and thermal conduction models of diamond/copper composites used as electronic packaging materials [J]. Materials Reports, 2016, 30(03):19-28.
    16Dai Shugang, Li Jinwang,Dong Chuanjun. Research Progress on Preparation Methods of High Thermal Conductivity Diamond/Copper Composites [J]. Fine Chemicals, 2019, 36 (10):1995-2008.
    17Andrey M,Abyzov, Miros?aw J. Kruszewski, ?ukaszCiupiński, et al. Diamond–tungsten based coating–copper composites with high thermal conductivity produced by Pulse Plasma Sintering [J]. Materials Design, 2015, 76:97-109.
    18Hu H , Kong J . Improved Thermal Performance of Diamond-Copper Composites with Boron Carbide Coating [J]. Journal of Materials Engineering and Performance, 2014, 23(2):651-657.
    19Abyzov A M, Kidalov S V, Shakhov F M. High thermal conductivity composites consisting of diamond filler with tungsten coating and copper (silver) matrix [J]. Journal of Materials Science, 2011, 46(5):1424-1438.
    20Che Q L , Zhang J J , Chen X K , et al. Spark plasma sintering of titanium-coated diamond and copper–titanium powder to enhance thermal conductivity of diamond/copper composites[J]. Materials Science in Semiconductor Processing, 2015, 33:67-75.
    21Fan Y M, Guo H, Xu J, et al. Effects of boron on the microstructure and thermal properties of Cu/diamond composites prepared by pressure infiltration [J]. International Journal of Minerals Metallurgy Materials, 2011, 18(4):472-478.
    22He J , Wang X , Zhang Y , et al. Thermal conductivity of Cu–Zr/diamond composites produced by high temperature–high pressure method [J]. Composites Part B: Engineering, 2015, 68:22-26.
    23Rape A, Liu X, Kulkarni A, et al. Alloy development for highly conductive thermal management materials using copper-diamond composites fabricated by field assisted sintering technology [J]. Journal of Materials Science, 2013, 48(3):1262-1267.
    24Justyna Grzonka, Miros?aw J. Kruszewski, Marcin Rosiński, ?ukasz Ciupiński, et al. Interfacial microstructure of copper/diamond composites fabricated via a powder metallurgical route [J].Materials Characterization,2015,99(99):
    25Bai G , Li N , Wang X , et al. High thermal conductivity of Cu-B/diamond composites prepared by gas pressure infiltration[J]. Journal of Alloys and Compounds, 2018,735.
    26Bai H, Ma N, Lang J, et al. Effect of a new pretreatment on the microstructure and thermal conductivity of Cu/diamond composites [J]. Journal of Alloys and Compounds, 2013, 580:382-385.
    27Bai H, Dai D, Yu J H, et al. Architecting boron nanostructure on the diamond particle surface [J]. Applied Surface Science, 2014, 292:790-794.
    28Sun Y, He L, Zhang C, et al. Enhanced tensile strength and thermal conductivity in copper diamond composites with B4C coating [J]. Scientific Reports, 2017, 7(1):10727.
    29Grzonka, J., Miros?aw J. Kruszewski, et al. Interfacial microstructure of copper/diamond composites fabricated via a powder metallurgical route [J]. Materials Characterization, 2015. 99: p. 188-194.
    30Patrycjusz Mańkowski, Dominiak A , Roman Domański, et al. Thermal conductivity enhancement of copper–diamond composites by sintering with chromium additive[J]. Journal of Thermal Analysis and Calorimetry, 2013, 116(2):881-885.
    31Ciupiński, Ciukasz, Kruszewski M J , Grzonka J , et al. Design of interfacial Cr3C2, carbide layer via optimization of sintering parameters used to fabricate copper/diamond composites for thermal management applications[J]. Materials Design, 2017, 120(Complete):170-185.
    32Rosinski M , Ciupinski L , Grzonka J , et al. Synthesis and characterization of the diamond/copper composites produced by the pulse plasma sintering (PPS) method [J]. Diamond and Related Materials, 2012, 27-28:29-35.
    33Chung C Y, Lee M T, Tsai M Y, et al. High thermal conductive diamond/Cu–Ti composites fabricated by pressureless sintering technique [J]. Applied Thermal Engineering, 2014, 69(1-2):208-213.
    34Li J, Wang X, Qiao Y, et al. High thermal conductivity through interfacial layer optimization in diamond particles dispersed Zr-alloyed Cu matrix composites [J]. Scripta Materialia, 2015,109.
    35Ekimov E A, Suetin N V, Popovich A F, et al. Thermal conductivity of diamond composites sintered under high pressures [J]. Diamond and Related Materials, 2008, 17(4-5):838-843.
    36Chen H, Jia C C, Li S J. Effect of sintering parameters on the microstructure and thermal conductivity of diamond/Cu composites prepared by high pressure and high temperature infiltration [J]. International Journal of Minerals, Metallurgy and Materials, 2013, 20(2):180-186.
    37Kang Q , He X , Ren S , et al. Preparation of high thermal conductivity copper-diamond composites using molybdenum carbide-coated diamond particles[J]. Journal of Materials Science, 2013, 48(18):6133-6140.
    38Kang Q, He X, Ren S, et al. Effect of molybdenum carbide intermediate layers on thermal properties of copper–diamond composites [J]. Journal of Alloys and Compounds, 2013, 576:380-385.
    39Kang Q , He X , Ren S , et al. Preparation of copper–diamond composites with chromium carbide coatings on diamond particles for heat sink applications[J]. Applied Thermal Engineering, 2013, 60(1-2):423-429.
    40Hui Chen, Chengchang Jia, Shangjie Li, et al. Selective interfacial bonding and thermal conductivity of diamond/Cu-alloy composites prepared by HPHT technique [J]. Journal of mineral metallurgy and materials, 2012, 19(4):364-371.
    41He J, Zhang H, Zhang Y, et al. Effect of boron addition on interface microstructure and thermal conductivity of Cu/diamond composites produced by high temperature-high pressure method [J]. physica status solidi (a), 2014, 211(3):587-594.
    42Sinha V, Spowart J E. Influence of interfacial carbide layer characteristics on thermal properties of copper–diamond composites [J]. Journal of Materials Science, 2013, 48(3):1330-1341.
    43Schubert T , Trindade B , Wei?G?Rber T , et al. Interfacial design of Cu-based composites prepared by powder metallurgy for heat sink applications[J]. Materials Science Engineering: A (Structural Materials: Properties, Microstructure and Processing), 2008, 475(1-2):39-44.
    44Chu K, Jia C, Guo H, et al. On the thermal conductivity of Cu–Zr/diamond composites [J]. Materials Design, 2013, 45(none):36---42.
    45Ueda K, Aichi S, Asano H. Direct formation of graphene layers on diamond by high-temperature annealing with a Cu catalyst [J]. Diamond and Related Materials, 2015, 63(3):59-89.
    46Abyzov, A.M.,Kruszewski M.J., Ciupiński L, et al., Diamond–tungsten based coating–copper composites with high thermal conductivity produced by Pulse Plasma Sintering [J]. Materials Design, 2015, 76:97-109.
    47Ma S, Zhao N, Shi C, et al. Mo2C coating on diamond: Different effects on thermal conductivity of diamond/Al and diamond/Cu composites [J]. Applied Surface Science, 2017, 402(Complete):372-383.
    48Lin B, Wang X, Zhang Y, et al. Interface characterization of a Cu–Ti-coated diamond system [J]. Surface and Coatings Technology, 2015, 278:163-170.
    49Zhang C, Wang R, Cai Z, et al. Effects of dual-layer coatings on microstructure and thermal conductivity of diamond/Cu composites prepared by vacuum hot pressing [J]. Surface and Coatings Technology, 2015, 277:299-307.
    50Pan Y, He X, Ren S, et al. Optimized thermal conductivity of diamond/Cu composite prepared with tungsten-copper-coated diamond particles by vacuum sintering technique [J]. Vacuum, 2018, 153:74-81.
    51Pan Y, He X, Ren S, et al. High thermal conductivity of diamond/copper composites produced with Cu–ZrC double-layer coated diamond particles [J]. Journal of Materials Science, 2018.
    52Maxwell J C A. A Treatise On Electricity and Magnetism (3rd edition) [M].New York: Dover Publications, 1954.
    53Eucken A. Heat Transfer in Ceramic Refractory Materials: Calculation from Thermal Conductivities of Constituents [J]. Fortchg. Gebiete Ingenieurw. B3, Forschungsheft, 1932, 16.
    54Stoner R J, Maris H J. Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K [J]. Physical Review B, 1993, 48(22):16373-16387.
    55Hasselman D P H, Johnson L F. Effective Thermal Conductivity of Composites with Interfacial Thermal Barrier Resistance [J]. Journal of Composite Materials, 1987, 21(6):508-515.
    56Yuan M , Tan Z , Fan G , et al. Theoretical modelling for interface design and thermal conductivity prediction in diamond/Cu composites[J]. Diamond and Related Materials, 2018, 81.
    57Zhang Y , Zhang H L , Wu J H , et al. Enhanced thermal conductivity in copper matrix composites reinforced with titanium-coated diamond particles[J]. Scripta Materialia, 2011, 65(12):1097-1100.
    58R. Lübbers, H. Grünsteudel, A. Chumakov, et al. Density of Phonon States in Iron at High Pressure [J]. Science, 2000, 287(5456):1250-1253.
    59L. He, J. Wang, Y. Bao, Y. Zhou, et al. Elastic and thermal properties of Zr2Al3C4: experimental investigations and ab initio calculations [J]. Appl. Phys. 102 (2007)043531.
    60Yang L , Sun L , Bai W , et al. Thermal conductivity of Cu-Ti/diamond composites via spark plasma sintering[J]. Diamond and Related Materials, 2019,94.
    61Stoner R J, Maris H J. Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K[J]. Physical Review B, 1993, 48(22):16373-16387.
    62Bruggman D A G.Dielectric constant and conductivity of mixtures of isotropic materials [J]. Annalen Physik, 1935, 24:636.
    63Every A G, Tzou Y, Hasselman D P, et al. The Effect of Microstructure on the Thermal Conductivity of ZnS/Diamond Composites [J]. Unknown, 1991.
    64Tavangar R, Molina J M, Weber L. Assessing predictive schemes for thermal conductivity against diamond-reinforced silver matrix composites at intermediate phase contrast [J]. Scripta Materialia, 2007, 56(5):357-360.
    65Molina J M, M. Rhême, Carron J, et al. Thermal conductivity of aluminum matrix composites reinforced with mixtures of diamond and SiC particles [J]. Scripta Materialia, 2008, 58(5):393-396.
    66Rape A, Liu X, Kulkarni A, et al. Alloy development for highly conductive thermal management materials using copper-diamond composites fabricated by field assisted sintering technology [J]. Journal of Materials Science, 2013, 48(3):1262-1267.
    67Cho H J, Yan D, Tam J, et al. Effects of diamond particle size on the formation of copper matrix and the thermal transport properties in electrodeposited copper-diamond composite materials [J]. Journal of Alloys and Compounds, 2019, 791:1128-1137.
    68Zain-Ul-Abdein M , Raza K , Khalid F A , et al. Numerical investigation of the effect of interfacial thermal resistance upon the thermal conductivity of copper/diamond composites[J]. Materials Design, 2015, 86:248-258.
    69Wu Y, Sun Y, Luo J, et al. Microstructure of Cu-diamond composites with near-perfect interfaces prepared via electroplating and its thermal properties [J]. Materials Characterization, 2019, 150:199-206.
    70Yang W, Peng K, Zhou L, et al. Finite element simulation and experimental investigation on thermal conductivity of diamond/aluminium composites with imperfect interface [J]. Computational Materials Science, 2014, 83(2):375-380.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈明和,李宏钊,王长瑞,王宁,李治佑.高导热金刚石/铜复合材料的导热研究进展[J].稀有金属材料与工程,2020,49(12):4146~4158.[Minghe Chen, Hongzhao Li, Changrui Wang, Ning Wang, Zhiyou Li. Progress in Heat conduction of Diamond/Cu Composites with High thermal conductivity[J]. Rare Metal Materials and Engineering,2020,49(12):4146~4158.]
DOI:10.12442/j. issn.1002-185X.20190960

复制
文章指标
  • 点击次数:1128
  • 下载次数: 1296
  • HTML阅读次数: 143
  • 引用次数: 0
历史
  • 收稿日期:2019-11-15
  • 最后修改日期:2020-12-17
  • 录用日期:2019-12-11
  • 在线发布日期: 2021-01-13