+高级检索
炭气凝胶作为燃料电池催化剂载体的研究进展
作者单位:

海军工程大学

中图分类号:

TK91

基金项目:

国家自然科学基金资助(项目号51802347);国家部委基金资助项目(项目号9140A27030514JB11449)


Progress on carbon aerogels as the supports of fuel cell catalysts
Author:
Affiliation:

1.Naval University of Engineering,Jiefang Road 717,Wuhan Hubei 430033;2.China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [98]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    设计制备低成本、高催化活性、高稳定性的ORR电催化剂对燃料电池的实际应用至关重要,良好的催化剂载体对提高催化剂的电化学催化性能具有重要意义。炭气凝胶具有孔结构可控、高比表面积、高导电性、大孔体积等优势,是一种非常具有潜力的燃料电池ORR电催化剂载体。本文对最近炭气凝胶作为燃料电池催化剂载体的研究进展进行了综述,简单介绍了炭气凝胶的种类及其负载催化剂的方法,着重讨论了炭气凝胶负载Pt等贵金属催化剂、炭气凝胶负载非贵金属催化剂以及非金属掺杂炭气凝胶催化剂的研究进展,最后总结了其面临的挑战和未来的主要发展方向。

    Abstract:

    The design and preparation of ORR electrocatalysts with low cost, high catalytic activity and high stability are of crucial importance to the practical application of fuel cells. Carbon aerogels (CAs) have the advantages of controllable pore structure, high specific surface area, high conductivity and large pore volume, and these characters allow it a potential candidate for fuel cell ORR electrocatalyst carrier. In this review, the recent progress on CAs as fuel cell catalyst carrier were reviewed. Firstly, the species of carbon aerogels and methods of supporting catalysts were simplely introduced, and then the research progress on precious metal catalysts supported on CA, especially Pt, the non-noble metal catalysts supported on CA and non-metal doping CA catalysts were discussed. In addition, the challenges and development direction in the future were summarized.

    参考文献
    参考文献 References
    [1] Guo Ruihua(郭瑞华),Zhang Jieyu(张捷宇),Zhou Guozhi(周国治), et al. Rare Metal Materials and Engineering [J]. 2018,47(01):383.
    [2] Pollet Bruno G., Kocha Shyam S., Staffell Iain. Current Opinion in Electrochemistry[J]. 2019,16:90.
    [3] Guo Ruihua(郭瑞华),Qian Fei(钱飞), An Shengli(安胜利), et al. Rare Metal Materials and Engineering [J]. 2019,48(08):2683.
    [4] Zhao M., Chen Z., Lyu Z., et al. J Am Chem Soc[J]. 2019,141(17):7028.
    [5] Wang Xiao Xia, Swihart Mark T., Wu Gang. Nature Catalysis[J]. 2019,2(7):578.
    [6] Wu Yanni(吴燕妮),Chen Zhisheng(陈志胜),Mo Zaiyong(莫再勇), et al. Rare Metal Materials and Engineering [J]. 2017,46(03):841.
    [7] Liu Minmin, Wang Linlin, Zhao Kangning, et al. Energy Environmental Science[J]. 2019,12(10):2890.
    [8] Zhao Z., Chen C., Liu Z., et al. Adv Mater[J]. 2019,31(31):e1808115.
    [9] Qu Y., Chen B., Li Z., et al. J Am Chem Soc[J]. 2019,141(11):4505.
    [10] Zhao Wenshi, Li Guodong, Tang Zhiyong. Nano Today[J]. 2019,27:178.
    [11] Sharma Surbhi, Pollet Bruno G. Journal of Power Sources[J]. 2012,208:96.
    [12] Wang Wang, Jia Qingying, Mukerjee Sanjeev, et al. ACS Catalysis[J]. 2019,9(11):10126.
    [13] Liu Daobin, Li Xiyu, Chen Shuangming, et al. Nature Energy[J]. 2019,4(6):512.
    [14] Niu Wen-Jun, Wang Ya-Ping, He Jin-Zhong, et al. Nano Energy[J]. 2019,63:103788.
    [15] Yang L., Shui J., Du L., et al. Adv Mater[J]. 2019,31(13):e1804799.
    [16] Chao Yajun(巢亚军),Yuan Xianxia(原鲜霞),Du Juan(杜娟), et al. Materials Science and Technology(材料科学与工艺)[J]. 2009,17(04):492.
    [17] Zhang H., Lyu S., Zhou X., et al. J Colloid Interface Sci[J]. 2019,536:245.
    [18] Yu Miao, Li Jian, Wang Lijuan. Chemical Engineering Journal[J]. 2017,310:300.
    [19] Oschatz Martin, Boukhalfa Sofiane, Nickel Winfried, et al. Carbon[J]. 2017,113:283.
    [20] Zhuo Hao, Hu Yijie, Tong Xing, et al. Industrial Crops and Products[J]. 2016,87:229.
    [21] Qian L., Yang M., Chen H., et al. Carbohydr Polym[J]. 2019,218:154.
    [22] Singh Rashmi, Singh M. K., Bhartiya Sushmita, et al. International Journal of Hydrogen Energy[J]. 2017,42(16):11110.
    [23] Sarapuu Ave, Samolberg Lars, Kreek Kristiina, et al. Journal of Electroanalytical Chemistry[J]. 2015,746:9.
    [24] Alegre Cinthia, Sebastián David, Gálvez María Elena, et al. Applied Catalysis B: Environmental[J]. 2016,192:260.
    [25] Guo Zhijun(郭志军). Theis for doctor Degree(博士学位论文) [D], Beijing Jiaotong University, 2011.
    [26] Job Nathalie, Marie Julien, Lambert Stéphanie, et al. Energy Conversion and Management[J]. 2008,49(9):2461.
    [27] Zubiaur Anthony, Job Nathalie. Applied Catalysis B: Environmental[J]. 2018,225:364.
    [28] Zubiaur A., Chatenet M., Maillard F., et al. Fuel Cells[J]. 2014,14(3):343.
    [29] Guo Zhijun, Zhu Hong, Zhang Xinwei, et al. Bull Mater Sci[J]. 2011,34(3):577.
    [30] Du Juan(杜娟). Theis for Master Degree(硕士论文)[D].Shanghai: Shanghai Jiao Tong University, 2007.
    [31] Barim Sansim Bengisu, Bozbag Selmi Erim, Yu Haibo, et al. Catalysis Today[J]. 2018,310:166.
    [32] Ye S., Vijh A. International Journal of Hydrogen Energy[J]. 2005,30(9):1011.
    [33] Zhu Hong, Guo Zhijun, Zhang Xinwei, et al. International Journal of Hydrogen Energy[J]. 2012,37(1):873.
    [34] Fu Ruowen, Baumann Theodore F., Cronin Steve, et al. Langmuir[J]. 2005,21(7):2647.
    [35] Fort Carmen I., Cotet Liviu C., Vasiliu Florin, et al. Materials Chemistry and Physics[J]. 2016,172:179.
    [36] Marie Julien, Berthon-Fabry Sandrine, Chatenet Marian, et al. Journal of Applied Electrochemistry[J]. 2007,37(1):147.
    [37] Marie J., Berthon-Fabry S., Achard P., et al. Journal of Non-Crystalline Solids[J]. 2004,350:88.
    [38] Du Juan(杜娟),Chao Xianxia(原鲜霞),Chao Yajun(巢亚军), et al. Jounal of Functional Materials(功能材料)[J]. 2007(04):580.
    [39] Wei Songli, Wu Dingcai, Shang Xuelong, et al. Energy Fuels[J]. 2009,23(2):908.
    [40] Du Hongda, Li Baohua, Kang Feiyu, et al. Carbon[J]. 2007,45(2):429.
    [41] Alegre C., Gálvez M. E., Moliner R., et al. Applied Catalysis B: Environmental[J]. 2014,147:947.
    [42] Saquing Carl D., Cheng Tai-Tsui, Aindow Mark, et al. The Journal of Physical Chemistry B[J]. 2004,108(23):7716.
    [43] Saquing Carl D., Kang Dafei, Aindow Mark, et al. Microporous and Mesoporous Materials[J]. 2005,80(1):11.
    [44] Rooke Joanna, Matos Camila, Chatenet Marian, et al. ECS Transactions[J]. 2010,33(1):447.
    [45] Rooke Joanna, de Matos Passos Camila, Chatenet Marian, et al. Journal of The Electrochemical Society[J]. 2011,158(7):B779.
    [46] Yuan Xianxia(原鲜霞),Du Juan(杜娟),Chao Yajun(巢亚军), et al. Journal of Chemical Industry and Engineering(化工学报)[J]. 2007(10):2519.
    [47] Smirnova A., Dong X., Hara H., et al. Journal of Fuel Cell Science and Technology[J]. 2006,3(4):477.
    [48] Smirnova A., Dong X., Hara H., et al. International Journal of Hydrogen Energy[J]. 2005,30(2):149.
    [49] Barim Sansim Bengisu, Bayrakceken Ayse, Bozbag Semi Erim, et al. Microporous and Mesoporous Materials[J]. 2017,245:94.
    [50] Alatalo Sara-Maaria, Qiu Kaipei, Preuss Kathrin, et al. Carbon[J]. 2016,96:622.
    [51] Guilminot Elodie, Fischer Florent, Chatenet Marian, et al. Journal of Power Sources[J]. 2007,166(1):104.
    [52] Du Hongda, Gan Lin, Li Baohua, et al. Journal of Physical Chemistry C[J]. 2007,111(5):2040.
    [53] Li Changqing, Sun Fengzhan, Lin Yuqing. Journal of Power Sources[J]. 2018,384:48.
    [54] Meng Fanlu, Li Lin, Wu Zhong, et al. Chinese Journal of Catalysis[J]. 2014,35(6):877.
    [55] Fu Gengtao, Liu Yu, Chen Yifan, et al. Nanoscale[J]. 2018,10(42):19937.
    [56] Wohlgemuth Stephanie-Angelika, White Robin Jeremy, Willinger Marc-Georg, et al. Green Chemistry[J]. 2012,14(5):1515.
    [57] Gao Shuyan, Li Xiaoge, Li Lingyu, et al. Nano Energy[J]. 2017,33:334.
    [58] Li Daohao, Jia Yi, Chang Guojing, et al. Chem[J]. 2018,4(10):2345.
    [59] Fechler N., Fellinger T. P., Antonietti M. Adv Mater[J]. 2013,25(1):75.
    [60] Tian Xiaoyu, Zhou Minghua, Tan Chaolin, et al. Chemical Engineering Journal[J]. 2018,348:775.
    [61] Ye Siyu, Vijh Ashok K. Electrochemistry Communications[J]. 2003,5(3):272.
    [62] Ye Siyu, Vijh Ashok K. Journal of Solid State Electrochemistry[J]. 2004,9(3):146.
    [63] Ye Siyu, Vijh Ashok K. Journal of Solid State Electrochemistry[J]. 2005,9(3):146.
    [64] Yang Wei, Chen Shengzhou, Lin Weiming. International Journal of Hydrogen Energy[J]. 2012,37(1):942.
    [65] Zhang Xiaoyuan, He Weihua, Zhang Rufan, et al. Chemsuschem[J]. 2016,9(19):2788.
    [66] Alegre C., Gálvez M. E., Sebastián D., et al. International Journal of Electrochemistry[J]. 2012,2012:1.
    [67] Jin Hong, Li Jinyang, Gao Lianxing, et al. International Journal of Hydrogen Energy[J]. 2016,41(21):9204.
    [68] Marie Julien, Chenitz Regis, Chatenet Marian, et al. Journal of Power Sources[J]. 2009,190(2):423.
    [69] Ouattara-Brigaudet Mathilde, Berthon-Fabry Sandrine, Beauger Christian, et al. International Journal of Hydrogen Energy[J]. 2012,37(12):9742.
    [70] Du Hongda(杜鸿达),Li Baohua(李宝华),Gan Lin(干林), et al. New Carbon Materials(新型炭材料)[J]. 2008(01):58.
    [71] Zhang Yun, Wu Xiaomei, Fu Yanbao, et al. Journal of Materials Research[J]. 2014,29(23):2863.
    [72] Kolla Praveen, Smirnova Alevtina. Electrochimica Acta[J]. 2015,182:20.
    [73] Baker Wendy S., Long Jeffrey W., Stroud Rhonda M., et al. Journal of Non-Crystalline Solids[J]. 2004,350:80.
    [74] Kim Gil-Pyo, Lee Minzae, Lee Yoon Jae, et al. Electrochimica Acta[J]. 2016,193:137.
    [75] Alegre C., Sebastian D., Galvez M. E., et al. Materials (Basel)[J]. 2017,10(9).
    [76] Berthon-Fabry Sandrine, Dubau Laetitia, Ahmad Yasser, et al. Electrocatalysis[J]. 2015,6(6):521.
    [77] Fernandez A., Ahmad Yasser, Guérin Katia, et al. E3S Web of Conferences[J]. 2017,16:17001.
    [78] Ouattara-Brigaudet M., Beauger C., Berthon-Fabry S., et al. Fuel Cells[J]. 2011,11(6):726.
    [79] Labbe Fabien, Asset Tristan, Chatenet Marian, et al. Electrocatalysis[J]. 2019,10(2):156.
    [80] Job Nathalie, Chatenet Marian, Berthon-Fabry Sandrine, et al. Journal of Power Sources[J]. 2013,240:294.
    [81] Liu Sisi, Deng Chengwei, Yao Lan, et al. Journal of Power Sources[J]. 2014,269:225.
    [82] Liu Sisi, Zhang Huamin, Xu Zhuang, et al. International Journal of Hydrogen Energy[J]. 2012,37(24):19065.
    [83] Sarapuu Ave, Kreek Kristiina, Kisand Kaarel, et al. Electrochimica Acta[J]. 2017,230:81.
    [84] Wang Qichen, Chen Zhiyan, Wu Nan, et al. ChemElectroChem[J]. 2017,4(3):514.
    [85] Smirnova A., Wender T., Goberman D., et al. International Journal of Hydrogen Energy[J]. 2009,34(21):8992.
    [86] Chen Zhiyan, Wang Qichen, Zhang Xiaobin, et al. Science Bulletin[J]. 2018,63(9):548.
    [87] Wang Lei, Cheng Jian, Kang Quansheng, et al. Composites Part B: Engineering[J]. 2019,174:107039.
    [88] Seredych Mykola, Laszlo Krisztina, Rodriguez-Castellon Enrique, et al. Journal of Energy Chemistry[J]. 2016,25(2):236.
    [89] Sebastián David, Alegre Cinthia, Gálvez María Elena, et al. Journal of Materials Chemistry A[J]. 2014,2(33):13713.
    [90] Kolla Praveen, Lai Chuilin, Mishra Srujan, et al. Carbon[J]. 2014,79:518.
    [91] Tardy Gábor Márk, Lóránt Bálint, Lóka Máté, et al. Biotechnology Letters[J]. 2017,39(7):993.
    [92] Seredych Mykola, Laszlo Krisztina, Bandosz Teresa J. Chemcatchem[J]. 2015,7(18):2924.
    [93] Wang Yi, Liu Hanyu, Wang Kun, et al. Applied Catalysis B-Environmental[J]. 2017,210:57.
    [94] Jin Hong, Zhang Huamin, Zhong Hexiang, et al. Energy Environmental Science[J]. 2011,4(9):3389.
    [95] Zhu Hong, Sun Zhaonan, Chen Minglin, et al. Electrochimica Acta[J]. 2017,236:154.
    [96] ünsal Se?il, Ya?c? Mustafa Bar??, Bozba? Selmi Erim, et al. Energy Technology[J]. 2019:1900450.
    [97] Jin Hong, Li Jinyang, Chen Fuyu, et al. Electrochimica Acta[J]. 2016,222:438.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张震,赵爽,陈国兵,李昆锋,费志方,罗中一,杨自春.炭气凝胶作为燃料电池催化剂载体的研究进展[J].稀有金属材料与工程,2020,49(11):3977~3986.[Zhang Zhen, Zhao Shuang, Chen Guobing, Li Kunfeng, Fei Zhifang, Luo Zhongyi, Yang Zichun. Progress on carbon aerogels as the supports of fuel cell catalysts[J]. Rare Metal Materials and Engineering,2020,49(11):3977~3986.]
DOI:10.12442/j. issn.1002-185X.20190990

复制
文章指标
  • 点击次数:1123
  • 下载次数: 1469
  • HTML阅读次数: 146
  • 引用次数: 0
历史
  • 收稿日期:2019-11-26
  • 最后修改日期:2020-03-17
  • 录用日期:2020-03-19
  • 在线发布日期: 2020-12-09