+高级检索
镍基单晶高温合金的小角度偏离[001]取向对蠕变性能的影响
作者:
作者单位:

1.中国科学院金属研究所;2.中国科学技术大学 材料科学与工程学院

基金项目:

National Science and Technology Major Project(2017-VⅠ-0003-0073),National Key R&D Program of China under Grant No. 2017YFA0700704, National Natural Science Foundation of China (NSFC) under Grant Nos. 51701210,51601192, 51671188 and Youth Innovation Promotion Association

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [44]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    小角度偏离[001]取向的镍基单晶高温合金的蠕变性能受温度、γ?尺寸的大小和应力条件的影响。本文综述了镍基单晶高温合金的[001]取向小角度偏离对蠕变性能的影响。不同程度的偏离引起的不同蠕变性能变化,源于不同的蠕变变形机制。不同的蠕变变形机制对应着引起蠕变率发生的不同临界应力。在中温(760℃-850℃),合金的蠕变性能对[001]取向的角度偏离很敏感,即使角度有一点变化也会引起蠕变性能的很大的差异,但是在温度高于850℃以上小角度的取向偏离对蠕变性能影响不大。γ?尺寸的大小对小角度偏离的合金的蠕变性能的影响受温度的制约。在中温,γ?尺寸的大小变化影响着不同的小角度偏离是否引起蠕变性能的变化,但是在高温γ? 相快速伐化,变形机制和γ?尺寸变化无关。

    Abstract:

    The creep behavior of Ni-based single crystal superalloys small degree deviated from [001] orientation is strongly influenced by temperature, γ? phase size and the level of applied stress. This article presents a review on effects of small orientation deviation on creep behavior of single crystal superalloys. Different creep properties of the alloys with orientation deviation originate from different creep deformation mechanisms. Besides, these mechanisms correspond to different threshold stress which are associated with the occurrence of primary creep and creep rate. At intermediate temperatures, the creep behavior of single crystal alloys is highly sensitive to small misorientation but relatively insensitive above 850 °C. The size of γ? phase is inferred to exert influence on the creep behavior of alloys with orientation deviation at intermediate temperatures. However, at elevated temperatures, the rafting process can be accelerated by higher thermal activation, thus the mechanical properties become less relevant with the size of γ? precipitates coarsening.

    参考文献
    [1] Rouault-Rogez H, Dupeux M, Ignat M. High temperature tensile creep of CMSX-2 nickel base superalloy single crystals. Acta Metallurgical et Materialia. 1994 (42): 3137-3148.
    [2] Pollock T. M, Argon A. S. Intermediate temperature creep deformation in CMSX-3 single crystals. Superalloys 1988. (1988): 285-294.
    [3] Milligan W.W, Antolovich S. D. The mechanisms and temperature dependence of superlattice stacking fault formation in the single-crystal superalloy PWA 1480. Metallurgical Transactions A. 1991 (22): 2309-2318.
    [4] Nathal M.V, Ebert L. J. Elevated temperature creep-rupture behavior of the single crystal nickel-base superalloy NASAIR 100. Metallurgical Transactions A. 1985 (16): 427-439.
    [5] Biemann H, Strehler M, Mughrabi H. High-temperature X-ray measurements of the lattice mismatch of creep-deformation monocrystals of the nickel-base superalloy SRR99. Scripta Metallurgical et Materialia. 1995 (32): 1405-1410.
    [6] Liu F, Yang G. C, Guo X. F. Research of grain refinement in undercooled DD3 single crystal superalloy. Materials Science and Engineering A. 2001 (311): 54-63.
    [7] Telesman J, Ghosn L. J. Fatigue crack growth behavior of PWA1484 single crystal superalloy at elevated temperatures. Journal of Engineering for Gas Turbines and Power. 1996 (118): 399-405.
    [8] Sengupta A, Putatunda S K, Bartosiewicz L, Hangas J, Nallos P J, Peputapeck M, Alberts F. E. Tensile behavior of a new single crystal nickel-based superalloy (CMSX-4) at room and elevated temperatures. Journal of Materials Engineering and Performance. 1994 (3): 664-672.
    [9] Akhtar A, Hook M S, Reed R. C. On the oxidation of the third-generation single-crystal superalloy CMSX-10. Metallurgical and Materials Transactions A. 2005 (36): 3001-3017.
    [10] Yoon K E, Isheim D, Noebe R D, Seidman D. N. Nanoscale studies of the chemistry of a RenéN6 superalloy. Interface Science. 2001 (9): 249-255.
    [11] Li Y F, Wang L, Zhang G, Qi D Q, Du K, Lou L H. Anisotropic Stress Rupture Properties of a 3rd?Generation Nickel?Based Single?Crystal Superalloy at 1100 °C/150 MPa. Acta Metallurgica Sinica (English Letters) 2019
    [12] Staroselsky A, Cassenti B. Mechanisms for tertiary creep of single crystal superalloy. Mechanics of Time-Dependent Materials. 2008,12: 275-289.
    [13] Walston W S, Schaeffer J C, Murphy W. H. A new type of microstructural instability in superalloys - SRZ. Superalloys 1996: 9-18.
    [14] Caron P. High γ? s olvus new generation nickel-based superalloys for single crystal turbine blade applications. Superalloy 2000: 737-746.
    [15] Argence D, Vernault C, Desvallées Y, Fournier D. MC-NG: A 4th generation single-crystal superalloy for future aeronautical turbine blades and vanes. Superalloy 2000: 829-837.
    [16] WANG Xin-guang, LIU Jin-lai, JIN Tao, SUN Xiao-feng, ZHOU Yi-zhou, HU Zhuang-qi, Do JH, Choi B G, Kim I S, Jo C Y. Effects of Temperature and Stress on Microstructural Evolution during Creep Deformation of Ru-free and Ru-containing Single Crystal Superalloys. ADVANCED ENGINEERING MATERIALS 2015, 17(7):1034-1044
    [17] Agudo Ja′come L, No¨rtersha¨user P, Heyer J -K, Lahni A, Frenzel J, Dlouhy A, SomsenaC, Eggeler G. High-temperature and low-stress creep anisotropy of single-crystal Superalloys. Acta Materialia 2013, 61:2926-2943
    [18] Agudo Ja′come L, No¨rtersha¨user P, Somsen C, Dlouhy′A, Eggeler G. On the nature of γ? phase cutting and its effect on high temperature and low stress creep anisotropy of Ni-base single crystal superalloys. Acta Materialia 2014, 69:246-264
    [19] Dye D, Ma A, Reed R C. Numerical modelling of creep deformation in a CMSX-4 single crystal superalloy turbine blade. Superalloy 2008: 911-919.
    [20] Wen Z X, Zhang D X, Li S W, Yue Z F, Gao J Y. Anisotropic creep damage and fracture mechanism of nickel-base single crystal superalloy under multiaxial stress. Journal of Alloys and Compounds 2017, 692:301-312
    [21] WANG Guang-lei, LIU jin-lai, LIU Ji-de, JIN T, SUN Xiao-feng, SUN X D, HU Zhuang-qi, High Temperature Stress Rupture Anisotropy of a Ni-Based Single Crystal Superalloy. Journal of Materials Science Technology 2016, 32:1003–1007
    [22] Matan N, Cox D C, Carter P, Rist M A, Rae C M F, Reed R C. Creep of CMSX-4 superalloy single crystal: effects of misorientation and temperature [J]. Acta Mater. 1999, 47:1549-1563.
    [23] Feller-Kniepmeier M and Kuttner T: Acta Metall. Mater. 1994, 42:3167.
    [24] POLLOCK T M and ARGON A S. Creep resistance of CMSX-3 nickel base superalloy single crystals. Acta metall, mater. 1992,40: 1-30,
    [25] SVOBODA J and LUKA?S P. Creep deformation modeling of superalloy single crystals. Acta meter, mater. 2000,48: 2519-2528,
    [26] Volkl R, Glatzel U and Feller-Kniepmeier M. Analysis of matrix and interfacial dislocations in the nickel base superalloy CMSX-4 after creep in [111] direction. Scripta Metallurgica et Materialia. 1994,31: 1481-1486,
    [27] N?rtersh?user P, Frenzel J, Ludwig A, Neuking K, Eggeler G. The effect of cast microstructure and crystallography on rafting, dislocation plasticity and creep anisotropy of single crystal Ni-base superalloys. Materials Science and Engineering A. 2015,626: 305-312,
    [28] MacKay R A and Maier R D, The influence of orientation on the stress rupture properties of nickel-base superalloy single crystals. Metall. Trans. 13A, 1982:1747-1754
    [29] Rae C M F, Atan N M, Cox D C, Rist M A, Reed R C, On the primary creep of CMSX-4 Superalloy Single Crystals. Met Trans A 2000, 31:2219–27
    [30] WANG Xin-guang, LIU Jin-lai, JIN Tao, SUN Xiao-feng, ZHOU Yi-zhou, HU Zhuang-qi, Do JH, Choi B G, Kim I S, Jo C Y.Effects of Temperature and Stress on Microstructural Evolution during Creep Deformation of Ru-free and Ru-containing Single Crystal Superalloys. ADVANCED ENGINEERING MATERIALS 2015, 17:1034-1044
    [31] Rae C M F, Reed R C, Primary creep in single crystal superalloys: Origins, mechanisms and effects. Acta Mater. 2007,55: 1067-1081
    [32] FIELD R D, POLLOCK T M, MURPHY W H. The development of γ/γ? interfacial dislocation networks during creep in Ni-base superalloys [C]. Superalloys, 1992:557-566.
    [33] ZHANG J X,URAKUMO T M, KOIZUMI Y. Interfacial dislocation networks strengthening a fourth generation single-crystal TMS-138 superalloys [J]. Metallurgicaland Materials Transactions A, 2002, 33 (12):3741-4376.
    [34] WABG J P, WEN Z X, LIANG J W, Yue Z F, Typical characteristics for creep fracture cleavage plane of nickel-based single crystal. Materials Science Engineering A 2019, 760:141-151.
    [35] Ma S, Seetharaman V, Bhaskar S, Majumdar. CRSS of γ/γ? phases from in situ neutron diffraction of a directionally solidified superalloy tension tested at 900℃. Acta Materialia 2008,56: 4102–4113
    [36] GABRISCHD H. MUKHERJ I and WAHI R P. Deformation-induced dislocation networks at the γ/γ? interfaces in the single-crystal superalloy SC16: A mechanism-based analysis, PHILOSOPHICMAALG AZIAN, E1 996, 7 4(1):229-249
    [37] POLLOCK T M and ARGON A S. Directional coarsening in nickel-base single crystals with high volume fractions of coherent precipitates. Acta metall, mater. 1994, 42(6): 1859-1874,
    [38] Liu D S, Zhang D X, Liang J W, Wen Z X, Yue Z F, Prediction of creep rupture life of a V-notched bar in DD6 Ni-based single crystal superalloy, Mater. Sci. Eng. A 2014, 615:14-21.
    [39] HAN Guo-ming, YU Jin-jiang, SUN Xiao-feng and HU Zhuang-qi. Effect of Threshold Stress on Anisotropic Creep Properties of Single Crystal Nickel-Base Superalloy SRR99 J. Mater. Sci. Technol., 2012, 28(5), 439-445.
    [40] CMF Rae, Matan N, Reed R C. The role of stacking fault shear in the primary creep of [001]-oriented single crystal superalloys at 750°C and 750MPa Mater Sci Eng A 2001,300:125–34.
    [41] V Sass, U. Glatzel, M. Feller-Kniepmeier, R.D. Kissinger, D.J. Deye, D.L. Anton, A.D. Cetel, M.V. Natal, T.M. Pollock, D.A. Woodford (Eds), Superalloys 1996, The Metallurgical Society of AIME, Warrendale, PN, 1996, p. 283.
    [42] Caron P, Ohta Y, Y.G. Nakagawa and T. Khan. Creep deformation anisotropy in single crystal superalloy, Superalloys 1988. In:Reichman S, Duhl D N, Maurer G, et al. Warrendale, PA:TMS,1988,215-224.
    [43] WANG Xin-guang, LIU Jin-lai, JIN Tao, SUN Xiao-feng, ZHOU Yi-zhou, HU Zhuang-qi, Do JH, Choi B G, Kim I S, Jo C Y. Creep deformation related to dislocations cutting the γ? phase of a Ni-base single crystal superalloy. Materials Science and Engineering A2015, 626:406-414.
    [44] Volker Sass, Monika Feller-Kniepmeier. Orientation dependence of dislocation structures and deformation mechanisms in creep deformed CMSX-4 single crystals. Materials Science and Engineering A 1998,245: 19–28
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杜云玲,谭子昊,杨彦红,陈超,王新广,周亦胄,孙晓峰.镍基单晶高温合金的小角度偏离[001]取向对蠕变性能的影响[J].稀有金属材料与工程,2021,50(4):1132~1138.[Du Yu-ling, Tan Zi-hao, Yang Yan-hong, Chen Chao, Wang Xin-guang, Zhou Yi-zhou, Sun Xiao-feng. Influence of small degree deviated from [001] orientation on creep behavior of Ni-based single crystal superalloys---A review[J]. Rare Metal Materials and Engineering,2021,50(4):1132~1138.]
DOI:10.12442/j. issn.1002-185X.20191063

复制
文章指标
  • 点击次数:927
  • 下载次数: 1280
  • HTML阅读次数: 157
  • 引用次数: 0
历史
  • 收稿日期:2019-12-17
  • 最后修改日期:2020-03-07
  • 录用日期:2020-03-19
  • 在线发布日期: 2021-05-08