+高级检索
定向凝固Mg2Si1-xSnx合金功率因子优化和热电性能研究
作者单位:

西安航空学院

基金项目:

国家自然科学基金青年项目(项目号:51904219); 西安航空学院校级科研资(项目号:2019KY0203)


Power Factor Optimization and Thermoelectric Properties of Mg2Si1-xSnx Alloys by Directional Solidification
Author:
Affiliation:

Xi’an Aeronautical University,Xi’an

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    通过高温度梯度定向凝固方法制备了高质量的Mg2Si1-xSnx晶体,对1.5at%Bi掺杂条件下不同Sn含量的合金进行了热电性能测试和电子传输性能的第一性原理计算。x=0.625时,由于达到能带收敛条件,Seebeck系数和功率因子均达到最大值,测试结果分别为-247μVK-1和5.7mWm-1K-2,与计算预测结果一致,与纳米级晶粒的块体材料相比,功率因子提升了25%。在T=700K处计算预测的最大ZT值为1.3,而实验测试值为1.16,而且在中温区的550K到800K之间预测和实验测试的ZT值均可以保持在0.9以上。通过优化功率因子的方法可以有效提高Mg2Si1-xSnx晶体的热电性能,而且可以避免热电器件在高温环境长时间服役时,由于晶粒长大而导致的性能降低。

    Abstract:

    Single-phase Mg2Si1-xSnx crystal was successfully directionally solidified from the melt. Thermoelectric properties were tested for 1.5at%Bi-doped crystals with different Sn contents, and electronic transport properties were predicted by the first-principle calculation. At x=0.625, tested Seebeck coefficient and power factor is -247μVK-1 and 5.7mWm-1K-2, respectively, because the band structure of Mg2Si0.375Sn0.625 is converged. This result is consistent with the calculated values, and the power factor enhanced 25%. The predicted and tested results of ZT maximum are 1.3 and 1.16 at T=700K, respectively. In the medium temperature range of 550K-800K, the predicted and tested ZT values can keep above 0.9. Power factor optimization is an effective way to improve the thermoelectric properties of Mg2Si1-xSnx crystal. In addition, the performance deterioration of thermoelectric devices induced by nano-sized grain growth at high service temperature can be avoided.

    参考文献
    [1] Deng Rigui, Su Xianli, Hao Shiqiang et al. Energy Environmental Science [J], 2018, 11 (6): 1520.
    [2] Zhang Jingwen(张静文), Zhang Feipeng(张飞鹏), Yang Xinyu(杨新宇) et al. Rare Metal Materials and Engineering [J], 2019, 48 (02): 644.
    [3] Wang Hongqiang(王洪强), Li Shuangming(李双明), Chang Xueqing(常雪晴) et al. Rare Metal Materials and Engineering [J], 2017, 46(10): 343.
    [4] Chang Cheng, Wu Minghui, He Dongsheng et al. Science 2018, 360: 778.
    [5] Snyder G J, Toberer E S. Nature Materials [J], 2008, 7(2): 105.
    [6] Qin Bingke, Ji Yonghua, Bai Zhiling et al. Rare Metal Materials and Engineering [J], 2019, 48 (10): 3118.
    [7] Shi Xun, Chen Lidong. Nature Materials [J], 2016, 15 (7): 691.
    [8] Pei Yanling, Liu Yong. Journal of Alloys and Compounds [J], 2012, 514: 40.
    [9] Du Zhengliang, Cui Jiaolin, Zhu Tiejun et al. Rare Metal Materials and Engineering [J], 2014, 43(11): 2623.
    [10] Zhang Qian(张倩), Zhao Xinbing(赵新兵), Yin Hao(殷浩) et al. Rare Metal Materials and Engineering [J], 2009, 38(z1): 165.
    [11] Bahk J H, Bian Zhixi, Shakouri A. Physical Review B [J] 2014, 89(7): 075204.
    [12] Liu Wei, Tang Xinfeng, Li Han et al. Chemistry of Materials [J], 2011, 23(23): 5256.
    [13] Gao Peng, Lu Xu, Berkun I et al. Applied Physics Letters [J] 2014, 105(20): 202104.
    [14] Zhang Qiang, Zheng Yun, Su Xianli et al. Scripat Materials [J], 2015, 96:1.
    [15] Bellanger P, Gorsse S, Bernard-Granger G, et al. Acta Materialia [J], 2015, 95: 102.
    [16] Liu Weishu, Kim H S, Jie Qing et al. Scripat Materials [J], 2016, 111: 3.
    [17] Feng Songke, Li Shuangming, Fu Hengzhi. Chinese Physics B [J], 2014, 23 (8): 086301.
    [18] Zhao Lidong, Tan Guangjian, Hao Shiqiang et al. Science [J], 2016, 351(6269):141.
    [19] Li Xin, Li Shuangming, Feng Songke et al. Journal of Electronic Materials [J], 2016, 45(6: 2895.
    [20] Liu Yong, Hu Wencheng, Li Dejiang et al. Physica Scripta [J], 2013, 88(4): 045302.
    [21] Feng Songke, Li Shuangmning, Fu Hengzhi. Computational Materials Science [J], 2014, 82: 45.
    [22] Marlo M, Milman V. Physical Review B [J], 2000, 62(4): 2899.
    [23] Vanderbilt D. Physical Review B [J], 1990, 41(11): 7892.
    [24] Schwarz K, Blaha P. Computational Materials Science [J], 2003,28(2): 259.
    [25] Scheidemantel T J, Ambrosch-Draxl C, Thonhauser T et al. Physical Review B [J]. 2003, 68(12): 125210.
    [26] Madsen G K H, Singh D J. Computer Physics Communications [J], 2006, 175(1): 67.
    [27] Mao Jun, Kim H S, Shuai Jing et al. Acta Materialia [J], 2016, 103: 633.
    [28] Li Xin, Li Shuangmning, Feng Songke et al. Intermetallics [J], 2017, 81: 26.
    [29] Pei Yanzhong, Shi Xiaoya, LaLonde A et al. Nature [J], 2011, 473(7345): 66.
    [30] Liu Wei, Tan Xiaojian, Yin Kang et al. Physics Review Letters [J], 2012, 108(16):166601.
    [31] Zhang Qiang, He J, Zhu Tiejun et al. Applied Physics Letters [J] 2008, 93(10): 102109.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李鑫,谢辉,张亚龙,魏鑫.定向凝固Mg2Si1-xSnx合金功率因子优化和热电性能研究[J].稀有金属材料与工程,2020,49(8):2779~2785.[Li Xin, Xie Hui, Zhang Yalong, Wei Xin. Power Factor Optimization and Thermoelectric Properties of Mg2Si1-xSnx Alloys by Directional Solidification[J]. Rare Metal Materials and Engineering,2020,49(8):2779~2785.]
DOI:10.12442/j. issn.1002-185X.20191096

复制
文章指标
  • 点击次数:735
  • 下载次数: 1231
  • HTML阅读次数: 150
  • 引用次数: 0
历史
  • 收稿日期:2019-12-27
  • 最后修改日期:2020-03-02
  • 录用日期:2020-03-05
  • 在线发布日期: 2020-09-27