+高级检索
大长径比超细WC-Co圆棒PIM充模过程的数值模拟
作者:
作者单位:

1.有研工程技术研究院有限公司先进电子材料事业部;2.有研工程技术研究院有限公司有色金属结构材料事业部;3.中国电子科技集团第二十九研究所微波集成中心

中图分类号:

TF125.3

基金项目:

国家重点研发计划专项项目(2017YFB0306000);有研科技集团有限公司青年基金资助项目(66271907);有研科技集团有限公司科技创新基金天使研究项目(2019TS0102)


Numerical Simulation of PIM Filling Process of Ultra-fine WC-Co Round Bar with Large Aspect Ratio
Author:
Affiliation:

1.Advanced Electronic Materials Division,GRIMAT Engineering Institute Co,Ltd;2.Microwave Circuit Integration Center,The th Research Institute of CETC

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    基于计算流体动力学的粉末-粘结剂双流体模型,采用CFX商业软件对大长径比超细WC/10Co粉末注射成形(PIM)充模过程进行数值模拟。结果表明:数值模拟结果与实际充模过程相一致,其假设条件和参数设置具有合理性,双流体模型具有可行性;粉末与粘结剂的温度分布一致,喂料熔体最低温度(≥330 K)高于粘结剂的玻璃化温度,不发生凝固现象;粉末的粘度为50.0~379.4 Pa·s,粘结剂的粘度为2.9~9.2 Pa·s,粘度差是造成偏析现象的主要原因;从浇口处到模壁处,粉末与粘结剂的相对速度差从0.2%增加到1.8%,从浇口处到远端,相对速度差从0.1%增大到1.6%,相对速度差是引起偏析现象的主要原因。

    Abstract:

    Based on the powder-binder two-fluid model, the filling process was simulated by CFX commercial software, especially for the ultra-fine WC/10Co round bar with large aspect ratio by powder injection molding (PIM). The results indicated that the numerical simulation results are almost consistent with the experimental filling process, which proves that the hypothesis and parameter settings are reasonable and the two-fluid model is feasible. Also there is no great difference in temperature distribution between powder and binder. There is no solidification for melting feedstock, which due to that the lowest temperature valued 330 K of melting feedstock is higher than the vitrification temperature of binder. In addition, there is great difference in the viscosity between powder and binder, valued 50.0 ~379.4 Pa·s, 2.9~9.2 Pa·s, respectively, which is one cause for segregation. Finally, it is also another main cause for segregation that the relative velocity difference between powder and binder increases up remarkably, such as 0.2% up 1.8% from gate to die wall, 0.1% up 1.6% from gate to far end.

    参考文献
    [1] Liu Youliang(刘友良), Gao Jianxiang(高建祥), Qu Xuanhui(曲选辉). Hunan Nonferrous Metals(湖南有色金属)[J], 2007, 23(1):31
    [2] Zhuo Haiyu(卓海宇), Gao Jianxiang(高建祥), Qu Xuanhui(曲选辉). New Technology & New Process (技术新工艺)[J], 2007, (6):87
    [3] Zheng Zhoushun(郑洲顺), Wang Shuang(王爽), Li Qiaojie(李俏杰) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2013, 42(08):1585
    [4] Xie Xingcheng(谢兴铖), Lin Chenguang(林晨光), Jia Chengchang(贾成厂) et al. Materials Reports(材料导报)[J], 2012, 26(23):99
    [5] Lin D, Kang T G, Han J S et al. The Journal of The Minerals, Metals & Materials Society[J], 2018, 70(5):621
    [6] Sanétrník D, Hausnerová B, Filip P et al. Powder Technology [J], 2018, 325:615
    [7] Xie Xingcheng(谢兴铖), Lin Chenguang(林晨光), Jia Chengchang(贾成厂) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2015, 44(12):3202
    [8] Xie X C, Lin C G, Jia C C et al. International Journal of Refractory Metals and Hard Materials[J], 2015, 48:305
    [9] Gao Jianxiang(高建祥), Zhuo Haiyu(卓海宇), Gao Zeping(高泽平) et al. Cemented Carbide(硬质合金)[J], 2006, 23(1):47
    [10] Xu Huaan(徐华安), Xiong Weihao(熊惟皓), Ye Dameng(叶大萌). [J]. Materials Reports(材料导报)[J], 2006, 20(11):84
    [11] Zheng Zhoushun(郑洲顺), Qu Xuanhui(曲选辉). Computer Engineering and Applications(计算机工程与应用)[J], 2003, 39(4):215
    [12] Liu Fei(刘飞), Li Wenming(李文明). Materials Science and Engineering of Powder Metallurgy(粉末冶金材料科学与工程)[J], 2019, 23(3):292
    [13] Wang Yuhui(王玉会), Qu Xuanhui(曲选辉), He Xinbo(何新波) et al. Rare Metals and Cemented Carbide(稀有金属与硬质合金)[J], 2008, 36(2):10
    [14] Kate K H, Enneti R K, McCabe T et al. Ceramics International[J], 2016, 42(1):194
    [15] Qu Xuanhui(曲选辉), Wen Hongyu(温宏宇), Ao Hui(敖晖) et al. Journal of Materials Engineering (材料工程)[J], 2001 (6):33
    [16] Zheng Zhoushun(郑洲顺), Qu Xuanhui(曲选辉), Han Xuli(韩旭里) et al. China Mechanical Engineering(中国机械工程)[J], 2002, 13(14):1257
    [17] Iwai T, Aizawa T, Kihara J. Powder Metallurgy World Congress-94[C]. Paris:1994:1097
    [18] Iwai T, Aizawa T, Kihara J. Advances of Powder Metallurgy and Particulate Materials[J], 1996, 5: 91
    [19] Wang Yuhui(王玉会), Qu Xuanhui(曲选辉), He Xinbo(何新波) et al. Materials for Mechanical Engineering(机械工程材料)[J], 2008, 32(5): 74
    [20] Wang Yuhui(王玉会), Qu Xuanhui(曲选辉), He Xinbo(何新波). Journal of University of Science and Technology Beijing(北京科技大学学报)[J], 2008, 32(5): 74
    [21] Liu Dayou(刘大有). Fluid Dynamics of Two-Phase System(二相流体动力学)[M] . Beijing: Higher Education Press,1993:441
    [22] Li Jinghai(李静海), Ou Yangjie(欧阳洁), Gao Shiqiu(高士秋) et al. Multi-scale Simulation of Granular Fluid Complex System(颗粒流体复杂系统的多尺度模拟)[M]. Beijing: Science Press, 2005:144
    [23] Shen H, Ackermann N L. Journal of the Engineering Mechanics Division[J], 1982, 108(5): 748
    [24] Manninen M, Taivassalo V, Kallio S. On the mixture model for multiphase flow[M]. Espoo:VTT Pulications 288, 1996
    [25] Kwon T H, Ahn S Y. Powder Technology[J], 1995, 85(1): 45
    [26] Shackelford J F, Han Y H, Kim S et al. CRC Materials Science and Engineering Handbook[M]. New York: CRC Press, 2016
    [27] Shah J, Nunn R E. Powder Metallurgy International[J], 1987, 19(6): 38
    [28] Sun Xiuwei(孙秀伟), Wang Jianling(王建玲). China Plastics(中国塑料)[J], 2014, 28(10):76
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

谢兴铖,曹瑞军,李增德,周增林,李卿,李悦,贾斌.大长径比超细WC-Co圆棒PIM充模过程的数值模拟[J].稀有金属材料与工程,2021,50(1):160~166.[Xie Xingcheng, Cao Ruijun, Li Zengde, Zhou Zenglin, Li Qing, Li Yue, Jia Bin. Numerical Simulation of PIM Filling Process of Ultra-fine WC-Co Round Bar with Large Aspect Ratio[J]. Rare Metal Materials and Engineering,2021,50(1):160~166.]
DOI:10.12442/j. issn.1002-185X.20200014

复制
文章指标
  • 点击次数:835
  • 下载次数: 1293
  • HTML阅读次数: 175
  • 引用次数: 0
历史
  • 收稿日期:2020-01-07
  • 最后修改日期:2020-03-02
  • 录用日期:2020-03-05
  • 在线发布日期: 2021-02-05