+高级检索
热处理对选区激光熔化GH3536合金晶界与拉伸行为的影响
作者:
作者单位:

1.湖北工程学院化学与材料科学学院;2.先进焊接技术湖北省重点实验室

中图分类号:

TG113


Effect of Heat Treatment on Grain Boundary and Tensile Behavior of Selective Laser Melting GH3536 Alloy
Author:
Affiliation:

1.College of Chemistry and Materials Science,Hubei Engineering Uniersity;2.Hubei Proince Key Laboratory of Adanced Welding Technology;3.ChinaHubei Proince Key Laboratory of Adanced Welding Technology;4.China;5.School of Materials Science and Engineering,Lanzhou Jiaotong Uniersity

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    采用选区激光熔化制备了GH3536合金,并分别进行固溶处理和热等静压处理,研究不同热处理手段对GH3536合金的组织形貌、晶界形态及室温拉伸行为的影响。结果表明:沉积态试样的组织由超细柱状亚晶粒与熔池界组成,存在气孔与微裂纹等缺陷;分别经固溶处理和热等静压处理后,二者致密度上升,组织转变为由大小不等的等轴晶粒交替分布组成,但后者沿晶界析出M23C6相,形成锯齿状的弯曲晶界;沉积态试样的拉伸性能表现出各向异性的特点,固溶处理可消除拉伸性能的各向异性,但抗拉强度和屈服强度均有下降,延伸率明显上升。热等静压态试样与固溶态试样相类似,但其抗拉强度、屈服强度和延伸率均有进一步的提高;三种合金的断裂机制均为微孔聚集型的韧性断裂。

    Abstract:

    The GH3536 alloy was prepared by selective laser melting, and was subjected to solution treatment and hot isostatic pressing, respectively. The effects of different heat treatment methods on the microstructure, grain boundary morphology and room temperature tensile behavior of GH3536 alloy were studied. The results show that the microstructure of the SLM sample consists of ultra-fine columnar sub-grains and pool boundary, with defects such as pores and microcracks. The relative density of the alloy increases after solution treatment and hot isostatic pressing, respectively, and the microstructures of the two alloys consist of alternating equiaxed grains of different sizes. However, the HIP sample precipitated the M23C6 phase along the grain boundary, forming a serrated grain boundary. The tensile properties of the SLM samples show obvious anisotropy. The solution treatment can eliminate the anisotropy of the tensile properties of the sample, but the ultimate tensile strength and yield strength are reduced, and the elongation is significantly increased. The HIP sample is similar to the solid solution sample, but its ultimate tensile strength, yield strength and elongation are further improved. Tensile fracture mechanisms of all three alloys are microporous aggregate-type ductile fracture.

    参考文献
    [1] Gu Dongdong(顾冬冬),Dai Donghua(戴冬华),Xia Mujian(夏木建) et al.Journal of Nanjing University of Aeronautics Astronautics(南京航空航天大学学报)[J],2017,49(5):645
    [2] Yang Tian, Dacian Tomus, Paul Rometsch et al.Additive Manufacturing[J],2017,13:103
    [3] Quanquan Han, Yuchen Gu, Rossitza Setchi et al.Additive Manufacturing[J],2020,30:100919
    [4] D. Tomus, T. Jarvis, X. Wu et al.Physics Procedia[J],2013,41:823
    [5] Li Yali(李雅莉),Lei Liming(雷力明),Hou Huipeng(侯慧鹏) et al. Journal of Materials Engineering(材料工程)[J],2019,47:100
    [6] Tadao Watanabe.Journal of Materials Science[J],2011,46:4095
    [7] Shuai Li, Qingsong Wei, Yusheng Shi et al. Journal of Materials Science Technology[J],2015,31:946
    [8] Wei Li, Shuai Li, Jie Liu et al. Materials Science and Engineering: A[J],2016,663:116
    [9] M.L. Montero-Sistiaga, S. Pourbabak, J. Van Humbeeck et al.Materials Design[J],2019,165:107598
    [10] Dacian Tomus, Yang Tian, Paul A. Rometsch et al.Materials Science Engineering A[J],2016,667:42
    [11] Fude Wang. International Journal of Advanced Manufacturing Technology[J],2012,58:545
    [12]Saeid Pourbabak, M.L. Montero-Sistiaga, Dominique Schryvers et al. Materials Characterization[J],2019,153:366
    [13] Ali Keshavarzkermani, Ehsan Marzbanrad, Reza Esmaeilizadeh et al. Optics and Laser Technology[J],2019,116:83
    [14] Narendran Raghavan,Ryan Dehoff,Sreekanth Pannala et al.Acta Materialia[J],2016,112:303
    [15] V.A. Popovich, E.V. Borisov, A.A. Popovich et al. Materials Design[J],2016,114:441
    [16] Maria L. Montero-Sistiaga, Zhuangzhuang Liu, Ludo Bautmans et al. Additive Manufacturing[J],2020,31:100995
    [17]Gong Zhihua(龚志华),Yang Gang(杨刚),Ma Longteng(马龙腾) et al.Transactions of Materials and Heat Treatment(材料热处理学报)[J],2017,38(9):83
    [18] Bai Guanghai(柏广海),Hu Rui(胡锐),Li Jinshan(李金山) et al.Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2011,40(10):1737
    [19] Yu Huicheng(于慧臣),Wu Xueren(吴学仁). Material data handbook for aeroengine design (Volume Ⅳ)(航空发动机设计用材料数据手册第四册)[M].Beijing:Aeronautical Industry Press, 2010:349
    [20] S.A. Khairallah, A.T. Anderson, A. Rubenchik et al. Acta Materiallia[J],2016,108:36
    [21] Guoqi Tan, Jian Zhang, Long Zheng et al. Advanced Materials[J],2019,1904603
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

燕 翔,陈小雨,刘巨锋,钟 菲,郑根稳,颜永斌,刘 海.热处理对选区激光熔化GH3536合金晶界与拉伸行为的影响[J].稀有金属材料与工程,2021,50(4):1296~1303.[Yan Xiang, Cheng Xiaoyu, Liu Jufeng, Zhong Fei, Wang Shunhua, Zheng Genwen, Liu Hai. Effect of Heat Treatment on Grain Boundary and Tensile Behavior of Selective Laser Melting GH3536 Alloy[J]. Rare Metal Materials and Engineering,2021,50(4):1296~1303.]
DOI:10.12442/j. issn.1002-185X.20200226

复制
文章指标
  • 点击次数:868
  • 下载次数: 1258
  • HTML阅读次数: 162
  • 引用次数: 0
历史
  • 收稿日期:2020-04-05
  • 最后修改日期:2020-07-07
  • 录用日期:2020-07-20
  • 在线发布日期: 2021-05-08