+高级检索
不同本构方程对C71500白铜合金热压缩的拟合分析
作者单位:

1.北京科技大学;2.北京有色研究总院;3.西安交通大学;4.无锡隆达金属材料有限公司

基金项目:

本项目得到了2017年工业强基工程——高强耐磨耐蚀特种铜合金材料,招标编号:TC170A2KN-8,国家自然科学基金(51801149号),无锡市企业院士工作站,项目编号:CYR1701,江苏省科技项目,项目编号:BM2018503的资金支持。National Strong Foundation Project of China (TC170A2KN-8), Industrialization Project of Scientific and Technological Achievements in Wuxi City (CYE22C1706), Wuxi Enterprise Academician Workstation (BM2018503) and the National Natural Science Foundation of China (No. 51801149)


Six different mathematical models to predict the hot deformation behavior of C71500 cupronickel alloy
Author:
Affiliation:

1.University of Science and Technology Beijing;2.General Research Institute of Nonferrous Metals;3.Xi''an Jiaotong University;4.Wuxi Longda metal material Co., Ltd

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [43]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    在Gleeble-3500热机械模拟机上,获得了C71500白铜合金在1073-1273k和应变速率范围内等温压缩试验的真实应力应变数据(0.01分-10秒-1)。采用Johnson-Cook、Johnson-Cook、Zerilli-Armstrong、Arrhenius、Fields-Backofen-Zhang和Zhou-Guan模型对高温流动应力本构方程进行了回归分析。通过比较精度、相关系数(R)、均方根误差(RMSE)、平均绝对相对误差(AARE)、不确定度个数和计算这些参数所需的时间,评价了六种模型的适用性。根据参数和时间消耗的拟合结果,Zhou-Guan模型是预测C71500合金在不同应变率和温度下变形抗力的最佳模型。研究结果为C71500合金及其它类似的不易冷变形铜合金的性能选择和验证提供了理论依据。

    Abstract:

    Base on the Gleeble-3500 thermo mechanical simulator, the real stress-strain data of C71500 cupronickel alloy in isothermal compression test were obtained in the temperature range (1073-1273k) and strain rate range (0.01-10s-1). Johnson-Cook, modified Johnson-Cook, modified Zerilli-Armstrong, Arrhenius-type, Fields-Backofen-Zhang and Zhou-Guan models were used to regress the constitutive equation of high temperature flow stress. The applicability of the six models were evaluated by comparing the accuracy, correlation coefficient (R), root mean square error (RMSE), average absolute relative error (AARE), the number of uncertaintyl and the time consuming for calculation of these parameters. According to the fitting results of parameters and time consumption, the Zhou-Guan model is the best for predicting the deformation resistance of C71500 alloy at different strain rates and temperatures. The results provide a theoretical basis for the capability selection and verification of C71500 alloy and other similar copper alloys which are not easily deformed by cold working.

    参考文献
    [1] S. Cincera, E. Bresciani, De-nickelification of 70/30 Cupronickel Tubing in a Cooling Heat Exchanger, Journal of Failure Analysis & Prevention 12(3) (2012) 300-304.
    [2] H. Ezuber, Effect of temperature and thiosulphate on the corrosion behaviour of 90-10 copper-nickel alloys in seawater, Anti-Corrosion Methods and Materials 56 (2009) 168-172.
    [3] J. Zhang, Q. Wang, Y. Wang, L. Wen, C. Dong, Effect of heat treatment on the highly corrosion-resistant Cu70Ni27.7Fe2.3 alloy, Journal of Alloys & Compounds 505(2) (2010) 505-509.
    [4] A.M. Beccaria, J. Crousier, Influence of iron addition on corrosion layer built up on 70Cu-30Ni alloy in sea water, British Corrosion Journal 26(3) (2013) 215-219.
    [5] B.E.T. Bautista, M.L. Carvalho, A. Seyeux, S. Zanna, P. Cristiani, B. Tribollet, P. Marcus, I. Frateur, Effect of protein adsorption on the corrosion behavior of 70Cu–30Ni alloy in artificial seawater, Bioelectrochemistry 97(1) (2014) 34-42.
    [6] S. Bhattacharya, G.P. Dinda, A.K. Dasgupta, J. Mazumder, A comparative study of microstructure and mechanical behavior of CO 2 and diode laser deposited Cu–38Ni alloy, Journal of Materials Science 49(6) (2014) 2415-2429.
    [7] Y.B. Jiang, X.G. Liu, X.J. Zhang, J.X. Xie, Influences of thermal-resistance angle of cooling mold on microstructure and mechanical property homogeneity of BFe10-1-1 cupronickel tube produced by HCCM horizontal continuous casting, Chinese Journal of Nonferrous Metals (2014) 2322-2332.
    [8] L.J.P. Drolenga, F.P. Ijsseling, B.H. Kolster, The Influence of Alloy Composition and microstructure on the corrosion behaviour of Cu-Ni alloys in seawater, Materials & Corrosion 34(4) (2015) 167-178.
    [9] B.E. Torres Bautista, A.J. Wikie?, I. Datsenko, M.A. Vera Veliz, W. Sand, A.L. Seyeux, S. Zanna, I. Frateur, P. Marcus, Influence of extracellular polymeric substances (EPS) from Pseudomonas NCIMB 2021 on the corrosion behaviour of 70Cu-30Ni alloy in seawater, Journal of Electroanalytical Chemistry 737 (2015) 184-197.
    [10] M. Wei, B. Yang, Y. Liu, X. Wang, J. Yao, L. Gao, Research progress and prospect on erosion-corrosion of Cu-Ni alloy pipe in seawater, Journal of Chinese Society for Corrosion & Protection 36(6) (2016) 513-521.
    [11] G. Caixiang, Z. Xiaolei, Z. Xiangbo, Influential factors of the copper alloy corrosion and research progress, Ship Eng (03) (2014) 10-12+56.
    [12] Y.C. Lin, M.-S. Chen, J. Zhong, Constitutive modeling for elevated temperature flow behavior of 42CrMo steel, Computational Materials Science 42(3) (2008) 470-477.
    [13] A. Hajari, M. Morakabati, S.M. Abbasi, H. Badri, Constitutive modeling for high-temperature flow behavior of Ti-6242S alloy, Materials Science & Engineering A 681 (2016) 1-20.
    [14] G.R. Johnson, W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, Proceedings of the 7th International Symposium on Ballistics, The Hague, the Netherlands 21(1) (1983) 541-547.
    [15] C.X.M. Lin Y C , Liu G A modified Johnson–Cook model for tensile behaviors of typical high-strength alloy steel, Materials Science & Engineering A 527(26) (2010) 6980-6986.
    [16] F. J. Zerilli, R. W. Armstrong, Dislocation-Mechanics Based Constitutive Relations for Material Dynamics Calculations, 1987.
    [17] D. Samantaray, S. Mandal, U. Borah, A.K. Bhaduri, P.V. Sivaprasad, A thermo-viscoplastic constitutive model to predict elevated temperature flow behaviour in a titanium modified austenitic stainless steel, Materials Science & Engineering A 526(1-2) (2009) 1-6.
    [18] C.M. Sellars, W.J. McTegart, On the mechanism of hot deformation, Acta Metallurgica 14(9) (1966) 1136-1138.
    [19] J.J. Jonas, C.M. Sellars, W.J.M. Tegart, Strength and structure under hot-working conditions, Metall Rev 14(1) (1969) 1-24.
    [20] Z. Wang, L. Qi, J. Zhou, J. Guan, L. Jian, A constitutive model for predicting flow stress of AlBO/AZ91D composite during hot compression and its validation, Computational Materials Science 50(8) (2011) 2422-2426.
    [21] D.S. Fields, W.A. Bachofen, Determination of Strain Hardening Characteristics by Torsion Testing, Proc. Am. Soc. Test. Mater 57 (1957) 1259-1272.
    [22] M. Zhou, Y.C. Lin, J. Deng, Y.Q. Jiang, Hot tensile deformation behaviors and constitutive model of an Al–Zn–Mg–Cu alloy, Materials & Design 59(6) (2014) 141-150.
    [23] W. Jia, X. Shuang, Q. Le, F. Li, L. Ma, T. Yan, Modified Fields–Backofen model for constitutive behavior of as-cast AZ31B magnesium alloy during hot deformation, Materials & Design 106 (2016) 120-132.
    [24] L. Peng, Z. He, S. Yuan, J. Shen, Tensile deformation behavior of Ti–22Al–25Nb alloy at elevated temperatures, Materials Science & Engineering A 556(11) (2012) 617-624.
    [25] Y. Lin, K. Zhang, Z. He, X. Fan, Y. Yan, S. Yuan, Constitutive Modeling of the High-Temperature Flow Behavior of α-Ti Alloy Tube, Journal of Materials Engineering & Performance 27(5) (2018) 1-9.
    [26] G. Kezhi, Z. Jihua, Z. Qisheng, S. Shihui, An Experimental study of the Resistance to plastic Deformation of Hot Rolling Metals, Journal of Beijing Iron and Steel Institute (01) (1983) 123-139.
    [27] S. Huang, A.S. Khan, On the use of electrical-resistance metallic foil strain gages for measuring large dynamic plastic deformation, Experimental Mechanics 31(2) (1991) 122-125.
    [28] S. Kumar, B. Aashranth, M.A. Davinci, D. Samantaray, U. Borah, A.K. Bhaduri, Assessing Constitutive Models for Prediction of High-Temperature Flow Behavior with a Perspective of Alloy Development, Journal of Materials Engineering & Performance 27(4) (2018) 2024-2037.
    [29] X.H. Zhao, D.D. Liu, W.U. Xiang-Hong, G.R. Liu, C. Liang, Flow behavior and constitutive description of Cu-Zr-Ce Alloy at high temperature, Journal of Central South University 25(5) (2018) 1013-1024.
    [30] J. Gao, M.-Q. Li, S.-F. Liu, G.-J. Liu, Deformation behavior and processing maps during isothermal compression of TC21 alloy, Rare Metals 36(2) (2017) 1-9.
    [31] Y. Mo, Y. Jiang, X. Liu, J. Xie, Effects of microstructure on the deformation behavior, mechanical properties and residual stress of cold-rolled HAl77-2 aluminum brass tube, Journal of Materials Processing Technology 235 (2016) 75-84.
    [32] Z. Zhou, Q. Fan, Z. Xia, A. Hao, W. Yang, J. Wei, H. Cao, Constitutive Relationship and Hot Processing Maps of Mg-Gd-Y-Nb-Zr Alloy, Journal of Materials Science & Technology 33(7) (2017) 637-644.
    [33] C. Jun, W. Kuaishe, W. Wen, Characterization of High Temperature Deformation Behavior of BFe10-1-2 Cupronickel Alloy Using Constitutive Equation and Processing Map, Rare Metal Materials and Engineering 45(10) (2016) 2549-2554.
    [34] J. Cai, K. Wang, C. Miao, W. Li, W. Wang, J. Yang, Constitutive analysis to predict high-temperature flow behavior of BFe10-1-2 cupronickel alloy in consideration of strain, Materials & Design (1980-2015) 65 (2015) 272-279.
    [35] J. Cai, K. Wang, Z. Peng, F. Li, Y. Jie, A Modified Johnson-Cook Constitutive Equation to Predict Hot Deformation Behavior of Ti-6Al-4V Alloy, Journal of Materials Engineering & Performance 24(1) (2015) 32-44.
    [36] Q.T. Jin, Z. Mei, L. Shuai, H. Tao, G. Jing, Y. He, A modified Johnson–Cook model for tensile flow behaviors of 7050-T7451 aluminum alloy at high strain rates, Materials Science & Engineering A 631(1) (2015) 214-219.
    [37] L. Hong-bin, Z. Ming-yue, T. Wei, X. Shu-cheng, T. Ya-qiang, Flow Stress Constitutive Equation of M50NiL Gear Steel Based on Johnson-Cook Model, Material for Mechanical Engineering 40(11) (2016) 31-37.
    [38] Y.Q. Cheng, H. Zhang, Z.H. Chen, K.F. Xian, Flow stress equation of AZ31 magnesium alloy sheet during warm tensile deformation, Journal of Materials Processing Tech 208(1) (2008) 29-34.
    [39] M.H. Wang, K. Wei, X.J. Li, A.Z. Tu, Constitutive modeling for high temperature flow behavior of a high-strength manganese brass, Journal of Central South University (2018) 1560-1572.
    [40] C.H. Liao, H.Y. Wu, S. Lee, F.J. Zhu, H.C. Liu, C.T. Wu, Strain-dependent constitutive analysis of extruded AZ61 Mg alloy under hot compression, Materials Science & Engineering A 565(10) (2013) 1-8.
    [41] Z. Yi, H. Sun, A.A. Volinsky, B. Wang, B. Tian, L. Yong, K. Song, Constitutive Model for Hot Deformation of the Cu-Zr-Ce Alloy, Journal of Materials Engineering & Performance 27(2) (2018) 728-738.
    [42] S. Mandal, V. Rakesh, P.V. Sivaprasad, S. Venugopal, K.V. Kasiviswanathan, Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel, Materials Science & Engineering A 500(1) (2009) 114-121.
    [43] J. Li, F. Li, J. Cai, R. Wang, Z. Yuan, G. Ji, Comparative investigation on the modified Zerilli–Armstrong model and Arrhenius-type model to predict the elevated-temperature flow behaviour of 7050 aluminium alloy, Computational Materials Science 71(3) (2013) 56-65.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

高鑫,武会宾,唐狄,李德富,刘明,周向东.不同本构方程对C71500白铜合金热压缩的拟合分析[J].稀有金属材料与工程,2020,49(12):4129~4141.[Xin Gao, Huibin Wu, Di Tang, Defu Li, Ming Liu, Xiangdong Zhou. Six different mathematical models to predict the hot deformation behavior of C71500 cupronickel alloy[J]. Rare Metal Materials and Engineering,2020,49(12):4129~4141.]
DOI:10.12442/j. issn.1002-185X.20200319

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-05-13
  • 最后修改日期:2020-06-04
  • 录用日期:2020-06-09
  • 在线发布日期: 2021-01-13