+高级检索
Mg-Y共掺杂高电压钴酸锂正极材料的合成及其性能研究
作者:
作者单位:

1.广东邦普循环科技有限公司;2.中南大学冶金与环境学院

中图分类号:

TM912


The synthesis of Mg-Y doped Cobalt Oxide cathode material and the studies on its performance in high voltage
Author:
Affiliation:

1.Guangdong Brunp Recycling Technology Co,Ltd;2.School of Metallurgy and Environment,Central south University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    将Co3O4、Li2CO3、Mg(OH)2和Y2O3按一定化学计量比称取并混合均匀后,采用高温固相法合成LiCo1-x-yMgxYyO2正极材料并探究了Mg-Y共掺杂对钴酸锂高电压性能的影响。采用X射线衍射(XRD)和扫描电镜(SEM)分别表征其晶体结构和形貌。LiCo1-x-yMgxYyO2正极材料高电压性能测试,结果表明选择Mg掺杂量为0.2wt%下,当Y掺杂量的质量百分数为0.10%wt时,在3.0-4.6V电压范围内0.5C下的初始放电比容量为212.3mAh/g,循环50圈的容量保持率为96.28%。4C大倍率下,未掺杂Y元素样品容量保持率为54.92%,相比之下Y掺杂后容量保持率提高为60.43%。

    Abstract:

    In order to improve the lifetime of the Lithium-ion battery, Mg-Y co-doped LiCoO2 was prepared by high temperature solid phase synthesis, with Co3O4, Li2CO3, Mg(OH)2 and Y2O3 as raw materials. The structure and morphology were characterized by X-ray diffraction (XRD) and scanning electron microscpoe (SEM). The battery achieved best electrochemical performance when the cathode is doped with 0.10wt% yttrium and 0.20wt% magnesium. The results of electrochemical performance showed that the initial discharge capacity was 212.3 mAh/g at 0.5C, 3.0-4.6V and with the outstanding capacity retention of 96.28% after 50 cycles at 3.0-4.6V. The discharge capacity of co-doped LiCoO2 at 4.0C remained 60.43% of the discharge capacity at 0.2C, while that of Mg only doped LiCoO2 is only 54.92%.

    参考文献
    [1] Whittingham, M.S. Chem. Rev.[J], 2004, 104(10),4271–4301
    [2] Jie-Nan Zhang?, Qinghao Li, Chuying Ouyang, et al. Nature Energy[J], 2019, 17(4):594-603.
    [3] Sujith Kalluri, Moonsu Yoon, Minki Jo et al. Advanced Energy Materials[J], 2017, 7(1): 1601507.
    [4] Yano, A., Shikano, M., Ueda, A., et al. J. Electrochem. Soc[J], 2017, 164(1):A6116–A6122.
    [5] Kim Y.J, Cho J, Kim T.J, et al. J. Electrochem. Soc[J]. 2003, 150(12):A1723–A1725.
    [6] 朱贤徐. 湖南有色金属[J],2018,34(4):37-40.
    [7] 曹景超,肖可颂,姜峰,等. 矿业工程[J],2016,36(4):109-112.
    [8] Daiko Takamatsu, Shinichiro Mori, Yuki Orikasa, et al. J.Electrochem.Soc[J], 2013,160(5):A3054-A3060.
    [9] 叶双雄,何炜乐,姚颖锴,等. 广州化工[J],2017,25(15):48-50.
    [10] Qi Liu, Xin Su, Dan Lei, et al. Nature energy[J], 2018,3:936-943.
    [11] H.Tukamoto, A.R.West. J.Electrochem.Soc[J], 1997,144(9): 3164-3168.
    [12] Shi Siqi, Ouyang Chuying, Lei Minsheng, et al. Journal of Power Sources[J], 2007,171:908-912.
    [13] S.Levasseur, M.Menetrier, C.Delmas. Chem. Mater[J], 2002,14:3584-3590.
    [14] H. J. Kim, Y. U. Jeong, J. H. Lee, et al. Journal of Power Sources[J],2006,159: 233-236.
    [15] Wang Z. G, Wang Z. X, Guo H. J, et al. Journal of Alloys and Compounds[J], 2015, 621: 212-219.
    [16] M. Mladenov, R. Stoyanova, E. Zhecheva, et al. Electrochemistry Communications[J], 2001, 3: 410-416.
    [17] Tian Yanwen, Kang Xiaoxue, Liu Liying, et al. Journal of rare earths[J], 2008,20(2):279-283.
    [18] Wang Meng, Chen Yunbo, Wu Feng, et al.Electrochimica Acta[J], 2010, 55:8815-8820.
    [19] Myung Seung-Taek, Kumagai Naoaki, Komaba Shinichi, et al. Solid State Ionics[J], 2001,139:47-56.
    [20] Kim Seon Hye, Kim Chang-Sam. J Electroceram[J], 2009, 23: 254-257.
    引证文献
引用本文

阮丁山,李玲,杜柯,毛林林,李斌,方庆城,徐振鹏,胡国荣. Mg-Y共掺杂高电压钴酸锂正极材料的合成及其性能研究[J].稀有金属材料与工程,2021,50(3):1026~1031.[Ruan Ding-shan, Li Ling, Du Ke, Mao Lin-lin, Li Bin, Fang Qing-cheng, Xu Zhen-peng, Hu Guo-rong. The synthesis of Mg-Y doped Cobalt Oxide cathode material and the studies on its performance in high voltage[J]. Rare Metal Materials and Engineering,2021,50(3):1026~1031.]
DOI:10.12442/j. issn.1002-185X.20200325

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-05-14
  • 最后修改日期:2020-06-03
  • 录用日期:2020-06-09
  • 在线发布日期: 2021-04-02