+高级检索
高强韧Ti-3Al-5Mo-4Cr-2Zr-1Fe合金低周疲劳性能研究
作者:
作者单位:

1.南京工业大学材料科学与工程学院/新材料研究院;2.俄罗斯乌法国立航空技术大学;3.中国人民解放军92228部队;4.南京工业大学2011学院

基金项目:

国家自然科学基金重点项目(No.51931008);江苏省重点研发计划((产业前瞻与关键核心技术--竞争项目)(No.BE2019119)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    本文通过室温下应变控制疲劳试验研究了高强韧Ti-3Al-5Mo-4Cr-2Zr-1Fe钛合金的低周疲劳性能,结果表明:在高应变幅值下(Δεt/2=1.0%,1.2%,1.4%,1.6%),合金的循环应力幅值表现为初始循环软化,而后趋于循环稳定;在低应变幅值下(Δεt/2=0.6%,0.8%),合金的循环应力响应表现为循环饱和特征。断口形貌观察发现:应变幅值为0.6%时,疲劳裂纹源只有一处,在断口表面分布有大量细小的二次裂纹。当应变幅增加到1.6%时,组织中发现多处疲劳裂纹源,二次裂纹的数量明显减少,但长度和宽度明显增加。透射电镜结果表明:在低应变幅值下(Δεt/2=0.6%),在αp/β界面处出现大量的位错堆积,在此处易产生应力集中导致微裂纹形核。而在高应变幅值下(Δεt/2=1.6%),在αp相中有明显的变形不均匀性,在αp相内出现大量的位错缠结和位错碎片,并且在αs相中出现一些位错塞积,但在β基体中没有明显的位错堆积情况。

    Abstract:

    In the present work, low cycle fatigue (LCF) behavior of Ti-35421 titanium alloy with bimodal microstructure consists of lath α (αp) and βtrans were investigated by strain-controlled mode at room temperature. Results indicated that the cyclic stress amplitude of the bimodal microstructure Ti-35421 alloy show cyclic softening at first, then reach to cyclic stability at high strain amplitude (Δεt/2=1.0%, 1.2%, 1.4%, 1.6%). However, the cyclic stress response was characterized by cyclic saturation at low strain amplitudes (Δεt/2=0.6%, 0.8%). One of fatigue crack source was found by fracture morphology observation when Δεt/2=0.6%, while a large number of small secondary cracks occurred on the surface. On the contrary, multiple fatigue crack sources generated when the strain amplitude increased to 1.6%, the number of secondary cracks reduced, but the length and width of the secondary cracks increased significantly. TEM results indicated that a large number of dislocations generate at the αp/βtrans interface at the low strain amplitude (Δεt/2=0.6%), which might lead to micro-crack nucleation due to the stress concentration. Meanwhile, at high strain amplitude ( Δεt/2=1.6%), deformation inhomogeneity phenomena happened in the αp phase, a large number of dislocation tangles and dislocation debris formed in the αp phase, and some dislocation pile-ups formed in the αs phase, which is not founded in the β substrate.

    参考文献
    [1] Chang Hui(常辉).Titanium Alloys For Marine Applications(海洋工程钛金属材料)[M].Beijing:Chemical Industry Press, 2017:272.
    [2] Chen Jun(陈军), Wang Tingxun(王廷询,) Zhou Wei(周伟) et al. Titanium Industry Progress[J]., 2015, 32(006):8-12.
    [3] Zhang Pingping(张平平), Wang Qingjuan(王庆娟), Gao Qi(高颀) et al. Hot Working Technology[J], 2012(14):59-63.
    [4] Dong Yuecheng(董月成), Fang Zhigang(方志刚), Chang Hui(常辉) et al. Materials China [J], 2020(03):185-190.
    [5] Chang Hui(常辉), Zeng Weidong(曾卫东), Luo Yuanyuan(罗媛媛)et al. Rare Metal Materials and Engineering[J], 2006, 35(10):1589-1592.
    [6] Chen Fuwen(陈福文), Xu Guanglong(徐广龙), Cui Yuwen(崔予文) et al. Materials [J], 2019, 12(17): 2791.
    [7]Li Xianmin(李献民), Liu Li(刘立), Dong Jie(董洁) et al. Materials China [J], 2015, 34(005):401-406.
    [8] Qu Ping (屈平). Exploratory study of the creep characteristic for titanium deep-sea pressure shell(深海钛合金耐压结构蠕变特性探索研究) [D]. 北京: 中国舰船研究院 (硕士学位论文).
    [9]Chen Xiaoyu(陈孝渝). Low cycle fatigue of submarine and submersible structures(潜艇和潜水器结构的低周疲劳)[M].Beijing: National Defence Industry Press, 1990:149.
    [10] Chen Wei(陈威), Sun Qiaoyan(孙巧艳), Xiao Lin(肖林) et al. Rare Metal Materials Engineering[J]. 2012, 41(011):1911-1916.
    [11] Huang Jun, Wang Zhirui, Xue Kemin. Materials Science and Engineering A[J], 2011, 528(29-30): 8723-8732.
    [12] Christ H J, Alvarez A M, Birnbaum H K et al. Fatigue Fracture of Engineering Materials Structures[J], 2010, 19(12):1421-1434.
    [13] Gao P F, Lei Z N, Li Y K et al. Materials science and Engineering A [J], 2018, 736(OCT.24):1-11.
    [14] YungLi Lee, Jwo Pan, Richard Hathaway et al. International Journal of Fatigue [J]. 2006, 28(2):173.
    [15] Singh, Nidhi, Gouthama, V. Singh. Materials Science Engineering A [J]. 2002, 325(1-2): 324-332.
    [16] Terlinde G, Rathjen H J, Schwalbe K H. Metallurgical Transactions A [J], 1988, 19(4):1037-1049.
    [17] Luquiau D, Feaugas X, Clavel M. Materials Science Engineering A [J], 1997, 224(1-2):146-156.
    [18] Nicholas T. International Journal of Fatigue[J], 1999.21(1): 221-231.
    [19]Tan Changsheng, Li Xiangli, Sun Qiaoyan et al. International Journal of Fatigue [J], 2015, 75:1-9.
    [20] Ramadan N. Elshaer, Khaled M. Ibrahim, Azza F. Barakat et al. Open Journal of Metal [J], 2017, 07(3):39-57.
    [21] Ankem S, Margolin H, Greene C A et al. Progress in Materials Science [J], 2006, 51(5):632-709.
    [22] ASTM STP 520. ASTM Standard[S]. 1973.
    [23] Huang Lijun(黄利军), Huang Xu(黄旭). Rare Metal Materials and Engineering [J], 2006(05):703-706.
    [24] Huang Chaowen(黄朝文). Influence of microstructure on fatigue damage behavior of Ti-55531 alloy with high strength and high toughness(显微组织对高强韧Ti-55531合金疲劳损伤的影响机制)[D], 西安:西北工业大学(硕士学位论文).
    [25] Xu Haifeng, Ye Duyi, Mei Linbo. Materials science Engineering A [J], 2017, 700(jul.17):530–539.
    [26] S.Hémery, P.Villechaise. Acta Materialia [J], 2017, 141: 285-293.
    [27] Huang Chaowen, Zhao Yongqing, Xin Shewei et al. International Journal of Fatigue [J], 2017, 94: 30-40
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张航,孙洋洋,Igor. V. Alexandrov,方志刚,易承杰,董月成,常辉,周廉.高强韧Ti-3Al-5Mo-4Cr-2Zr-1Fe合金低周疲劳性能研究[J].稀有金属材料与工程,2021,50(2):588~594.[Zhang Hang, Sun Yangyang, Igor. V. Alexandrov, Fang Zhigang, Yi Chengjie, Dong Yuecheng, Chang Hui, Zhou Lian. Study on Low Cycle Fatigue Behavior of Ti-3Al-5Mo-4Cr-2Zr-1Fe Alloy with High Strength and Toughness[J]. Rare Metal Materials and Engineering,2021,50(2):588~594.]
DOI:10.12442/j. issn.1002-185X.20200554

复制
文章指标
  • 点击次数:1052
  • 下载次数: 1313
  • HTML阅读次数: 166
  • 引用次数: 0
历史
  • 收稿日期:2020-07-29
  • 最后修改日期:2020-09-18
  • 录用日期:2020-10-15
  • 在线发布日期: 2021-03-09