+高级检索
面向磁致伸缩-电磁复合式能量采集器的压磁效应模型
作者:
作者单位:

1.广东工业大学 自动化学院,广东 广州 510006;2.哈尔滨工业大学 电气工程及自动化学院,黑龙江 哈尔滨 150001

基金项目:

Natural Science Foundation of Guangdong Province (Grant No. 2018A030313010)


Modeling of Piezomagnetic Effect for Magnetostrictive-Electromagnetic Hybrid Vibration Energy Harvester
Author:
Affiliation:

1.School of Automation, Guangdong University of Technology, Guangzhou 510006, China;2.School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China

Fund Project:

Natural Science Foundation of Guangdong Province (2018A030313010)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    提出了一种简化的、能指导复合式能量采集器中磁致伸缩发电效应、电磁发电效应的最优性能输出的理论模型。在模型的建立过程中,首先研究了应力和磁场对Tb0.3Dy0.7Fe2合金压磁效应的影响,讨论了单独应力和单独磁场作用下磁致伸缩材料内磁通密度的变化特性;其次,提出了基于预加载荷方法和基于冲击应力方法的理论模型思路,并分别探讨了2种模型建立方法在复合式能量采集器设计中最大压磁系数获取的准则;最后,完成了能量采集器的大压磁系数获取方法的可靠性试验,实验结果与理论设计的结果吻合较好。该模型能够快速、准确地获得不同应用环境下复合式能量采集器的压磁特性,并可用于获取大压磁系数的复合式能量采集器构造及设计。

    Abstract:

    A simplified computational model for obtaining large piezomagnetic effect of magnetostrictive-electromagnetic hybrid vibration energy harvester was presented. During the model establishment, the influence of compressive stress ?σ and magnetic field ΔH on the piezomagnetic effect of Tb0.3Dy0.7Fe2 alloy was studied, and their separate influence on magnetic flux density ?B of magnetostrictive material was investigated. Then, two methods, pre-loads-based method and impact stress-based method, were used to discuss the optimal criterion of hybrid piezomagnetic effect for the fabrication of magnetostrictive-electromagnetic generator. Finally, the modeling accuracy for obtaining large piezomagnetic effect was testified, and the experiment and theoretical results were in good agreement. Results show that the modeling can efficiently and accurately obtain the piezomagnetic effect for hybrid magnetostrictive material-based harvester under different application environments, which is of significance for design and fabrication of magnetostrictive-electromagnetic hybrid vibration energy harvester for obtaining large piezomagnetic effect.

    参考文献
    [1] Bai H, Liu Z, Sun D D et al. Energy[J], 2014, 76: 607
    [2] Chen M, Gao X. Energy[J], 2014, 78: 364
    [3] Elvin N G, Elvin A A, Spector M. Smart Materials and Structures[J], 2001, 10(2): 293
    [4] Zhang H. Applied Physics Letters[J], 2011, 98: 232 505
    [5] Lundgren A, Tiberg H, Kvarnsjo L et al. IEEE Transactions on Magnetics[J], 1993, 29(6): 3150
    [6] Adly A, Davino D, Giustiniani A et al. Journal of Applied Physics[J], 2010, 107(9): 09A935
    [7] Davino D, Giustiniani A, Visone C. IEEE Transactions on Magnetics[J], 2009, 45(10): 4108
    [8] Staley M E, Flatau A B. Smart Structures and Materials 2005: Smart Structures and Integrated Systems[C]. San Diego: International Society for Optics and Photonics, 2005, 5764: 630
    [9] Bayrashev A, Robbins W P, Ziaie B. Sensors and Actuators A: Physical[J], 2004, 114(2): 244
    [10] Lei W, Yuan F G. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2007[C]. San Diego: International Society for Optics and Photonics, 2007, 6529: 652 941
    [11] Zhao X, Lord D G. Journal of Applied Physics[J], 2006, 99(8): 08M703
    [12] Berbyuk V, Sodhani J. Computers and Structures[J], 2008, 86(3): 307
    [13] Wang L, Yuan F G. Smart Structures and Materials[J], 2008, 17(4): 45 009
    [14] Davino D, Giustiniani A, Visone C. IEEE Transactions on Industrial Electronics[J], 2011, 58(6): 2556
    [15] Rezaeealam B, Ueno T, Yamada S. IEEE Transactions on Magnetics[J], 2012, 48(11): 3977
    [16] Yoo J H, Flatau A B. Journal Intelligent Material Systems and Structures[J], 2012, 23(6): 647
    [17] Cao S Y, Zheng J J, Guo Y et al. IEEE Transactions on Magnetics[J], 2015, 51(12): 8 201 304
    [18] Park Y W, Kang H S, Wereley N M. Journal of Applied Physics[J], 2014, 115(17): 17E713
    [19] Armstrong W D. Journal of Applied Physics[J], 2002, 91(4): 2202
    [20] Mei W, Okane T, Umda T. Journal of Applied Physics[J], 1998, 84(11): 6208
    [21] Zhang C S, Sun G G, Yan M et al. Applied Physics Letters[J], 2014, 104(5): 52 409
    [22] Yan B P, Zhang C M, Li L Y et al. Chinese Physic B[J], 2014, 23(12): 127 504
    [23] Hu C C, Shi Y G, Shi D N et al. Journal of Applied Physics[J], 2013, 113(20): 203 906
    [24] Yang Y V, Huang Y Y, Jin Y M. Applied Physics Letters[J], 2011, 98(1): 12 503
    [25] Zhang C S, Ma T Y, Pan X W et al. Chinese Physics Letters[J], 2012, 29(2): 27 501
    [26] Zhang H, Zeng D C. Acta Physica Sinica[J], 2010, 59(4): 2808
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

严柏平,洪俊杰,张成明.面向磁致伸缩-电磁复合式能量采集器的压磁效应模型[J].稀有金属材料与工程,2021,50(9):3133~3138.[Yan Baiping, Hong Junjie, Zhang Chengming. Modeling of Piezomagnetic Effect for Magnetostrictive-Electromagnetic Hybrid Vibration Energy Harvester[J]. Rare Metal Materials and Engineering,2021,50(9):3133~3138.]
DOI:10.12442/j. issn.1002-185X.20200569

复制
文章指标
  • 点击次数:615
  • 下载次数: 1320
  • HTML阅读次数: 311
  • 引用次数: 0
历史
  • 收稿日期:2020-08-05
  • 最后修改日期:2020-08-25
  • 录用日期:2020-09-02
  • 在线发布日期: 2021-09-26
  • 出版日期: 2021-09-24