+高级检索
BT25钛合金在锻造过程中失稳变形和动态再结晶行为的数值模拟
作者:
作者单位:

南昌航空大学 航空制造工程学院,江西 南昌 330063

中图分类号:

TG146.23

基金项目:

国家自然科学基金资助(项目号51464035)


Numerical Simulation of Unstable Deformation and Dynamic Recrystallization Behavior of BT25 Titanium Alloy During Hot Forging
Author:
Affiliation:

School of Aeronautic Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China

Fund Project:

National Natural Science Foundation of China (51464035)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    分别利用失稳图和功率耗散图确定BT25钛合金失稳变形组织和动态再结晶变形组织的热力参数边界条件,并将其输入到Deform-3D有限元软件中,使加工图技术与有限元技术能够进行有效结合。利用二次开发后的软件对BT25钛合金在变形温度为950~1100 ℃和应变速率0.001~1 s-1的条件下进行失稳变形组织和动态再结晶行为的模拟和预测,并通过对比金相组织,验证了该模拟结果的可靠性。结果表明,流动应力随变形温度的升高或应变速率的降低而降低;失稳变形组织集中在低温、高应变速率区域;高温和低应变速率均有利于动态再结晶(DRX)行为;微观组织的观察结果与模拟预测的结果吻合较好,说明本研究提出的加工图技术与有限元技术相结合的方法对模拟与预测金属锻造过程中的失稳变形组织和DRX行为是可行的。

    Abstract:

    The thermal parameter boundary conditions of the unstable deformation microstructure and dynamic recrystallized microstructure of BT25 titanium alloy were determined by the instability maps and power dissipation maps, respectively. The results were used in the Deform-3D finite element (FE) software to effectively combine the processing map technique with FE technique. The FE codes after secondary development were used to simulate and predict the unstable deformation zones and dynamic recrystallization (DRX) behavior of BT25 titanium alloy at the deformation temperature of 950~1100 °C and the strain rate of 0.001~1 s-1. The reliability of simulation results was verified by metallographic microstructure. Results show that the flow stress is decreased with increasing the deformation temperature or decreasing the strain rate. The unstable deformed microstructure is concentrated in the region of low temperature and high strain rate. Both high temperature and low strain rate are beneficial to DRX behavior. The results of metallographic microstructure are in good agreement with those of simulation, indicating that the method of combining processing map technique and FE technique is reliable and feasible for predicting the unstable deformed microstructure and DRX behavior in the metal forging process.

    参考文献
    [1] Dong Wang, Guo He, Ye Tian et al. Journal of Materials Science & Technology[J], 2020, 44: 160
    [2] Yang Xuemei, Guo Hongzhen, Yao Zekun et al. Rare Metals[J], 2018, 37(5): 778
    [3] Tian Yuxing, Liu Cheng. Rare Metal Materials and Engineering [J], 2019, 48(11): 3764
    [4] Wan Zhipeng, Sun Yu, Hu Lianxi et al. Rare Metal Materials and Engineering[J], 2018, 47(3): 835 (in Chinese)
    [5] Zhou Guowei, Li Zihan, Li Dayong et al. International Journal of Plasticity[J], 2017, 91: 48
    [6] Chen Xiong, Lv Yaping, Zhang Xiaoyong et al. Rare Metal Materials and Engineering[J], 2020, 49(3): 897
    [7] Taku S, Andrey B, Rustam K et al. Progress in Materials Science[J], 2014, 60: 130
    [8] Wang Zhongtang, Jiang Jihao, Liu Xunan et al. Rare Metal Materials and Engineering[J], 2019, 48(7): 2062
    [9] Sivaprasad P V, Venugopal S, Davies C H J et al. Modelling and Simulation in Materials Science and Engineering[J], 2004, 12(2): 285
    [10] Liu Juan, Li Juqiang, Cui Zhenshan et al. Transactions of Non-ferrous Metals Society of China[J], 2013, 23(10): 3011
    [11] Ma Xiong, Zeng Weidong, Tian Fei et al. Journal of Materials Engineering and Performance[J], 2012, 21(8): 1591
    [12] Zhou Haiping, Zhang Hongbin, Liu Jie et al. Rare Metal Materials and Engineering[J], 2018, 47(11): 3329
    [13] Alireza H, Maryam M, Seyed M A et al. Materials Science and Engineering A[J], 2017, 681: 103
    [14] Wang Jingfeng, Xie Feizhou, Liu Shijie et al. Rare Metal Materials and Engineering[J], 2018, 47(6): 1700
    [15] Quan Sijia, Song Kexing, Zhang Yanmin et al. Rare Metal Materials and Engineering[J], 2019, 48(11): 3600 (in Chinese)
    [16] Venugopal S, Mannan S L, Prasad Y V R K. Metallurgical and Materials Transactions A[J], 1996, 27(1): 119
    [17] Luo Liangshun, Wang Fuxin, Wu Xiaoming et al. Rare Metal Materials and Engineering[J], 2018, 47(7): 2049 (in Chinese)
    [18] Gegel H L, Prasad Y V R K, Doraivelu S M et al. AGARD Process Modeling Application to Metal Forming and Thermome-chanical Process[J], 1984, 11: 15 086
    [19] Venugopal S, Mannan S L, Prasad Y V R K. Journal of Materials Science Letters[J], 1997, 16(2): 137
    [20] Sun Huanying, Cao Jingxia, Wang Bao et al. Rare Metal Materials and Engineering[J], 2013, 42(11): 2351
    [21] Murty S V S N, Rao B N. Journal of Materials Processing Technology[J], 2000, 104(1-2): 103
    [22] Yang Qunying, Liu Wenyi, Zhang Zhiqing et al. Rare Metal Materials and Engineering[J], 2018, 47(2): 409
    [23] Najafizadeh A, Jonas J J. ISIJ International[J], 2006, 46: 1679
    [24] Forouzan F, Najafizadeh A, Kermanpur A et al. Materials Science and Engineering A[J], 2010, 527(27-28): 7334
    [25] Sellars C M, Whiteman J A. Metal Science[J], 1979, 13(3-4): 187
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

冯瑞,王克鲁,鲁世强,李鑫,周璇.BT25钛合金在锻造过程中失稳变形和动态再结晶行为的数值模拟[J].稀有金属材料与工程,2021,50(9):3149~3157.[Feng Rui, Wang Kelu, Lu Shiqiang, Li Xin, Zhou Xuan. Numerical Simulation of Unstable Deformation and Dynamic Recrystallization Behavior of BT25 Titanium Alloy During Hot Forging[J]. Rare Metal Materials and Engineering,2021,50(9):3149~3157.]
DOI:10.12442/j. issn.1002-185X.20200573

复制
文章指标
  • 点击次数:622
  • 下载次数: 1071
  • HTML阅读次数: 283
  • 引用次数: 0
历史
  • 收稿日期:2020-08-05
  • 最后修改日期:2020-08-13
  • 录用日期:2020-09-02
  • 在线发布日期: 2021-09-26
  • 出版日期: 2021-09-24