+高级检索
热处理对Ti90钛合金显微组织及性能的影响
作者单位:

1.东北大学;2.西北有色金属研究院;3.西部钛业有限责任公司

基金项目:

国家重点研发计划(项目号2016YFB0301201)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    对比研究了退火温度、冷却速度及多重退火工艺对一种新型近α钛合金Ti90显微组织、室温拉伸性能和腐蚀性能的影响。结果表明:在两相区退火时,随退火温度升高,变形组织逐渐球化,初生α相(αp)体积分数降低,次生α相(αs)增多并发生粗化,合金强度逐渐降低,塑性提高;β单相区退火后空冷,组织中原始β晶粒粗大,且有晶界α相析出(αGB),合金塑性急剧下降;β单相区退火后水冷,β晶粒内部析出细针状α"马氏体相,显著提高了合金强度,同时保持了较好的塑性;多重退火后αp和βt尺寸增加,αs粗化,导致合金强度和塑性同时降低;极化曲线测试结果显示,具有四种不同αp含量显微组织的Ti90合金在3.5% NaCl溶液中均表现出钝化行为,且钝化电流密度小,耐蚀性较好,耐蚀能力由强到弱依次为双态组织>等轴组织>片层组织。

    Abstract:

    The effects of annealing temperature, cooling rate and multiple annealing process on microstructures, tensile properties and corrosion behavior of a new near-α titanium alloy-Ti90 were comparatively investigated.The results show that when specimens were annealed in the two-phase region,as the annealing temperature increased, the deformed structure gradually spheroidized with a decreased fraction of primary α phase (αp) and an increased fraction of β-transformation structure (βt), in which the secondary α phase (αs) precipitated and coarsened gradually. Those changes finally rose up to the reduced strength and improved plasticity. When annealing in single β phase zone, a fine lamellar microstructure was obtained with fairly coarse original β grains, which resulted in a sharp decrease in the plasticity of the alloy. After water cooling, the acicular α′ martensite phase was precipitated inside β grains, which significantly improved the strength while maintaining good plasticity. With multiple annealing, the size of αp and βt increased, and αs coarsened, leading to a simultaneous decrease in the strength and plasticity of the alloy. The polarization curve test results show that Ti90 alloys with four different microstructures all exhibite passivation behavior in 3.5% NaCl solution with low passivation current density, which implicates a good corrosion resistance. The corrosion resistance of different microstructures is in the order of bimodal microstructure > equiaxed microstructure > Lamellar microstructure.

    参考文献
    [1] Jia Hong(贾翃),Lu Fusheng(逯福生),Hao Bin(郝斌).Titanium Industry Progress(钛工业进展)[J],2020,37(03):33
    [2] Jiang Hong(江洪),Chen Yayang(陈亚杨).Advanced Materials Industry(新材料产业)[J],2018,(12):11
    [3] Xia Shenlin(夏申琳),Wang Gang(王刚),Yang Xiao(杨晓) et al.Metal Working(金属加工)[J],2016,(19):40
    [4] Oryshchenko A S,Gorynin I V,Leonov V P et al.Inorganic Materials: Applied Research[J],2015,6(6):571
    [5] Yang Yingli(杨英丽),Luo Yuanyuan(罗媛媛),Zhao Hengzhang(赵恒章) et al.Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2011,40(S2):538
    [6] Zhao Yongqing(赵永庆).Materials China(中国材料进展)[J],2014,(7):398
    [7] Puja Y,Kuldeep K S.Materials Today: Proceedings[J],2020,26(Pt 2)
    [8] Yue Ke,Liu Jianrong,Zhu Shaoxiang et al.Materialia[J],2018,1:128
    [9] Wang Jian,Lin Xin,Wang Meng et al.Materials Science Engineering A[J],2020,776
    [10] Shashank S,Vivek B.Materials Letters[J],2020,267
    [11] Li Jiaqiang,Lin Xin,Guo Pengfei et al.Corrosion Science[J],2018,142:161
    [12] Lu Jinwen,Ge Peng,Li Qian et al.Journal of Alloys and Compounds[J],2017,727:1126
    [13] Yang Yahui,Xia Chaoqun,Feng Zhihao et al.Corrosion Science[J],2015,101:56
    [14] Lütjering G,Williams J C.Titanium[M].Heidelberg:Springer-Verlag Berlin Heidelberg,2007:202
    [15] Huang Sensen,Zhang Jinhu,Ma Yingjie et al.Journal of Alloys and Compounds[J],2019,791:575
    [16] Huang Sensen(黄森森),Ma Yingjie(马英杰),Zhang Shilin(张仕林) et al.Acta Metallurgica Sinica(金属学报)[J],2019,55(06):741
    [17] Zhang Zhu(张翥),Wang Qunjiao(王群骄),Mo Wei(莫畏).Metallography and Heat Treatment of Titanium(钛的金属学和热处理)[M].Beijing:Metallurgical Industry Press,2009:48
    [18] Pan Jinsheng(潘金生),Quan Jianmin(全建民),Tian Minbo(田民波).Fundamental of Materials Science(材料科学基础)[M].Beijing:Tsinghua University Press,2011:512
    [19] Huang L J,Geng L,Li A B et al.Materials Science and Engineering: A[J],2008,489(1-2):330
    [20] Shi Xiaohui,Zeng Weidong,Long Yu et al.Journal of Alloys and Compounds[J],2017,727:555
    [21] Zhou Y G,Zeng W D,Yu H Q.Materials Science and Engineering: A[J],1996,221(1):58
    [22] Banerjee D,Williams J C.Acta Materialia[J],2013,61(3):844
    [23] Atapour M,Pilchak A,Frankel G S et al.Corrosion[J],2010,66(6):65004
    [24] Levy M,Sklover G N.Journal of the Electrochemical Society[J],1969,116(3):323
    [25] He X,Nol J,Shoesmith D.Corrosion[J],2004,60
    [26] Codaro E N,Nakazato R Z,Horovistiz A L et al.Materials science engineering. A[J],2003,341(1-2):202
    [27] Huang Shixing,Zhao Yongqing,Yu Jiashi et al.Journal of Alloys and Compounds[J],2020,826:154128
    [28] Ralston K,Birbilis N.Corrosion[J],2010,66
    [29] Capela M V,Acciari H A,Capela J M V et al.Journal of Alloys and Compounds[J],2008,465(1-2):479
    [30] Mohan L,Anandan C,Grips V K W.Applied Surface Science[J],2012,258(17):6331
    [31] Wang Qianzhi,Zhou Fei,Zhou Zhifeng et al.Electrochimica Acta[J],2013,112:603
    [32] Pham M T,Zyganow I,Matz W et al.Thin Solid Films[J],1997,310(1):251
    [33] Atapour M,Pilchak A L,Shamanian M et al.Materials Design[J],2011,32(3):1692
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王可,赵永庆,贾蔚菊,侯智敏,李思兰,毛成亮.热处理对Ti90钛合金显微组织及性能的影响[J].稀有金属材料与工程,2021,50(2):552~561.[王可,Zhao Yongqing, Jia Weiju, Hou Zhimin, Li Silan, Mao Chengliang. Effect of Heat Treatment on Microstructures and Properties of Ti90 Alloy[J]. Rare Metal Materials and Engineering,2021,50(2):552~561.]
DOI:10.12442/j. issn.1002-185X.20200612

复制
文章指标
  • 点击次数:1148
  • 下载次数: 1664
  • HTML阅读次数: 178
  • 引用次数: 0
历史
  • 收稿日期:2020-08-18
  • 最后修改日期:2020-09-03
  • 录用日期:2020-09-18
  • 在线发布日期: 2021-03-09