+高级检索
增材制造W-Ni-Fe系高比重合金的研究进展
作者:
作者单位:

1.北方工业大学;2.中国工程物理研究院材料研究所

中图分类号:

TG146.4+11

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目),科学挑战专题,北京市教委科技创新服务能力建设一般项目


Research progress of additive manufacturing of W-Ni-Fe heavy alloys
Affiliation:

Institute of Materials, China Academy of Engineering Physics

Fund Project:

The Science Challenge Project , The National Natural Science Foundation of China, the Beijing Scientific and Technological Innovation Service Capacity Building Project

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    金属增材制造技术是从20世纪90年代初期发展起来的一项先进制造技术,能够实现高性能复杂结构金属零件的无模具、快速、全致密近净成形。高比重W-Ni-Fe合金由于具有高密度、高强度和高塑性等特性,广泛应用于国防工业和国民经济领域。近年来,W-Ni-Fe高比重钨合金的增材制造受到了广泛关注。本文综述了国内外研究机构采用选区激光熔化技术(SLM)、激光熔化沉积技术(LMD)、电子束选区熔化技术(EBSM)和粘合喷射技术(BJP)四种增材制造技术制备W-Ni-Fe合金的研究进展,从成形工艺、成形件微观组织和力学性能等方面进行了分析,并对未来研究趋势做出了预测。

    Abstract:

    Metal additive manufacturing technology is an advanced manufacturing technology developed from the early 1990s, which can realize the non-die, fast, fully dense near-net forming of complex high-performance structural metal parts. W-Ni-Fe heavy alloys are widely used in defense industry and national economy due to their properties of high density, high strength and high plasticity. In recent years, the additive manufacturing of W-Ni-Fe heavy alloys has attracted extensive attention. This paper summarizes the research progress of additive manufacturing of W-Ni-Fe heavy alloys from domestic and foreign research institutions, which use selective laser melting (SLM), laser melting deposition (LMD), electron beam selective melting (EBSM) and binder jet printing (BJP) to prepare W-Ni-Fe heavy alloys. The forming process, microstructure and mechanical properties of the additive manufactured parts are analyzed. The research trends are finally speculated.

    参考文献
    [1]赵慕岳, 范景莲, 王伏生等. 我国钨基高密度合金的发展现状与展望[J]. 中国钨业,1999(Z1):38
    [2]German R M, Bourguignon L L, Rabin B H et al. Microstructure Limitations of High Tungsten Content Heavy Alloys[J]. Journal of metals, 1985, 37(8):36
    [3]Upadhyaya A, German R M. Shape distortion in liquid-phase-sintered tungsten heavy alloys[J]. Metallurgical and materials transactions A-physical metallurgy and matrials science, 1998, 29(10):2631
    [4] 黄卫东, 李延民, 冯莉萍等. 金属材料激光立体成形技术[J]. 材料工程, 2002(03):41
    [5]Li R D, Shi Y S, et al. Selective laser melting W–10 wt.% Cu composite powders[J]. International journal of advanced manufacturing technology, 2010, 48(5-8):597
    [6] Zhang D Q, Cai Q Z, et al. Select laser melting of W–Ni–Fe powders: simulation and experimental study[J]. International journal of advanced manufacturing technology, 2010, 51(5-8):649
    [7] 李瑞迪. 金属粉末选择性激光熔化成形的关键基础问题研究[D]. 武汉,华中科技大学, 2010
    [8] Zhang D Q, Cai Q Z, et al. Research on Process and Microstructure Formation of W-Ni-Fe Alloy Fabricated by Selective Laser Melting[J]. Journal of materials engineering and performance, 2011, 20(6):1049
    [9] Li R D, Liu J H, Shi Y S, et al. Effects of processing parameters on rapid manufacturing 90W–7Ni–3Fe parts via selective laser melting[J]. Powder Metallurgy, 2011, 53(4):310
    [10] Wang X, Matthew W, et al. Densification of W-Ni-Fe Powders Using Laser Sintering[J]. International journal of refractory metals & hard materials, 2016, 56:145
    [11] Ivekovi?, Alja?, Montero Sistiaga M L, Vanmeensel K, et al. Effect of processing parameters on microstructure and properties of tungsten heavy alloys fabricated by SLM[J]. International journal of refractory metals & hard materials, 2019, 82:23
    [12] Li J F, Wei Z Y, Zhou B K, et al. Densification, Microstructure and Properties of 90W-7Ni-3Fe Fabricated by Selective Laser Melting[J]. Metals, 2019, 9(8):884
    [13] Chen H, Zi X, Han Y, et al. Microstructure and mechanical properties of additive manufactured W-Ni-Fe-Co composite produced by selective laser melting[J]. International journal of refractory metals & hard materials, 2020, 86:263
    [14]张亚玮, 张述泉, 王华明. 激光熔化沉积定向快速凝固高温合金组织及性能[J]. 稀有金属材料与工程, 2008(01):169
    [15] Zhong M, Liu W, Ning G, et al. Laser direct manufacturing of tungsten nickel collimation component[J]. Journal of materials processing technology, 2004, 147(2):167
    [16]钟敏霖, 杨林, 刘文今等. 激光快速直接制造W/Ni合金太空望远镜准直器[J]. 中国激光, 2004, 31(004):482
    [17] 王攀, 刘天伟, 蒋驰等. 钨基合金激光立体成形的组织及性能研究[J]. 激光技术, 2016, 40(2):254
    [18] 王攀. 钨基高比重合金激光立体成形技术探究[D]. 绵阳, 中国工程物理研究院, 2015
    [19] Wang G Y, Sun X, Huang M, et al. Influence of processing parameters on the microstructure and tensile property of 85 W-15Ni produced by laser direct deposition [J]. International journal of refractory metals & hard materials, 2019, 82:227
    [20] Wang G Y, Gu S N, Yang S. Microstructure and properties of tungsten heavy alloys fabricated by laser direct deposition[J]. Material science and technology, 2016, 12:1
    [21] Li C, Ma S Y, Liu X, et al. Microstructures and properties of 80W-20Fe alloys prepared using laser melting deposition process[J]. International journal of refractory metals & hard materials, 2018, 77:113
    [22] 马诗雨. 激光熔化沉积钨合金的组织与性能研究[D]. 北京,北方工业大学,2019
    [23] Li C, Wang Y P, Ma S Y, et al. Densification, microstructural evolutions of 90W-7Ni-3Fe tungsten heavy alloys during laser melting deposition process[J]. International journal of refractory metals & hard materials, 2020, 91, 105254
    [24] Wang Y P, Ma S Y, Yang X S, et al. Microstructure and strengthening mechanisms of 90W-7Ni-3Fe alloys prepared using laser melting deposition[J]. Journal of alloys and compounds, 2020, 838, 155545
    [25] Zhou S C, Wang L, Liang Y J, et al. A strategy to achieve high-strength W-Ni-Fe composite-like alloys with low W content by laser melting deposition[J].Materials & Design, 2020, 190:75
    [26] 郭超, 张平平, 林峰. 电子束选区熔化增材制造技术研究进展[J]. 工业技术创新, 2017(04):10
    [27] 邢希学, 潘丽华, 王勇等. 电子束选区熔化增材制造技术研究现状分析[J]. 焊接, 2016, 000(007):22
    [28] 曾光, 韩志宇, 梁书锦等. 金属零件3D打印技术的应用研究[J]. 中国材料进展, 2014, 000(006):376
    [29] 杨广宇, 陈靖海, 刘楠等. 线能量密度对电子束增材制造W-Ni-Fe合金致密化过程的影响[J]. 材料热处理学报, 2019, 40(9):77
    [30] Bose, Animesh, Schuh, et al. Traditional and additive manufacturing of a new Tungsten heavy alloy alternative [J]. International journal of refractory metals & hard materials, 2018, 73:22
    [31] Nandwana P, Elliott A M, Siddel D, et al. Powder bed binder jet 3D printing of Inconel 718: Densification, microstructural evolution and challenges[J]. Current opinion in solid state and materials science, 2017, 4(21):207
    [32] Michael T, Stawovya, Kyle Myersb, et al. Binder jet printing of tungsten heavy alloy[J]. International journal of refractory metals & hard materials, 2019, 83
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李纯,张玮,周昱昭,杨晓珊,李晋锋,刘学,乐国敏.增材制造W-Ni-Fe系高比重合金的研究进展[J].稀有金属材料与工程,2021,50(8):3011~3019.[Li Chun, Zhang Wei, Zhou Yuzhao, Yang Xiaoshan, Li Jinfeng, Liu Xue, Le Guomin. Research progress of additive manufacturing of W-Ni-Fe heavy alloys[J]. Rare Metal Materials and Engineering,2021,50(8):3011~3019.]
DOI:10.12442/j. issn.1002-185X.20200635

复制
文章指标
  • 点击次数:1032
  • 下载次数: 1662
  • HTML阅读次数: 166
  • 引用次数: 0
历史
  • 收稿日期:2020-08-24
  • 最后修改日期:2021-02-02
  • 录用日期:2021-03-08
  • 在线发布日期: 2021-09-07
  • 出版日期: 2021-08-31