+高级检索
重复加工对单晶镍表面形貌及亚表面缺陷的影响
作者:
作者单位:

1.太原工业学院机械工程系现代制造研究所;2.太原理工大学机械与运载工程学院

基金项目:

山西省高等学校科技创新项目资助(项目号2019L0926)


Influence of Tool Shape on Surface Quality of Monocrystalline Nickel Nanofabrication
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    本文通过分子动力学模拟对重复纳米加工单晶镍中的表面形貌、亚表面损伤和刀具受力情况进行了分析。并通过纳米划痕实验适当验证了理论分析的结论。论文对加工中一系列原子的坐标进行追踪,揭示了重复加工时表面凹槽的形成及变化原因。通过共近邻分析和位错提取技术,得出在单晶镍纳米加工中,重复加工一次会对工件亚表面质量有所改善,而重复加工两遍则基本没有区别。同时,刀具在第一次加工中所受切向力和法向力明显较大,而之后的两次重复加工则刀具受力基本相同。采用原子力显微镜对纳米划痕实验后的单晶镍进行表面粗糙度检测,发现重复一次加工会适当的提高加工后工件表面质量。

    Abstract:

    In this work, research on the surface morphology, sub-surface damage and tool force in the repeated nanofabrication of monocrystalline nickel was conducted via molecular dynamics. And the conclusion of the theoretical analysis was properly verified by the nano-scratch experiment The paper traced the coordinates of a series of atoms during processing, revealing the formation of grooves on the surface and the reasons for the changes during repeated processing. Through CAN analysis and DXA technology, it was concluded that in monocrystalline nickel nano-processing, repeated processing once will improve the sub-surface quality of the workpiece, but there was basically no difference between repeated processing twice. At the same time, the tangential force and the normal force of the tool in the first machining were obviously larger, and the force of the tool was basically the same in the subsequent two repeated machining. The surface roughness of the single crystal nickel after the nano-scratch experiment was detected by an atomic force microscope, and it was found that repeated processing once would appropriately improve the surface quality of the processed workpiece.

    参考文献
    [1] Ling L, Han Y, Zhou W. Study of microsegregation and laves phase in INCONEL 718 superalloy regarding cooling rate during solidification [J]. Metall. Mate. Trans. A,2015, 46(1):354-361.
    [2] Jiang F, Liao W M. Study on High Speed Grinding and Morphology of K4169 Alloy. Found. Technol..Vol.38 No.08 Aug. 2017,1822-1825(蒋 放,廖文敏.K4169合金的高速磨削与形貌特征研究[J].铸造技术.Vol.38 No.08 Aug. 2017,1822-1825)
    [3] Cheng Z D, Zhu J,Sun T Y. Stability and magnetism of fcc single-crystal nickel nanowires by first principles calculations. Acta Phys. Sin. Vol. 60, No. 3 (2011) 037504(程志达,朱 静,孙铁昱.面心立方单晶镍纳米线稳定性及磁性的第一性原理计算[J].物理学报.Acta Phys. Sin. Vol. 60, No. 3 (2011) 037504)
    [4] K. Maekawa, A. Itoh. Friction and tool wear in nano-scale machining-a molecular dynamics approach.Wear. 188 (1995) :115-122#$NL
    [5] Zhang W W, Guo G, Huang Y, et al. Plastic deformation of nanometric grinding process for FCC metal, Adv. Mater. Res.,Vols 154-155 (2011) : 1336-1341
    [6] 金洙吉,谢 飞,郭晓,等.单晶金刚石切削模具钢磨损机理的分子动力学仿真[J].纳米技术与精密工程. 2016,14( 6) : 410-415.
    [7] S. Eder, D. Bianchi, U. Cihak-Bayr, A. Vernes, G. Betz, An analysis method for atomistic abrasion simulations featuring rough surfaces and multiple abrasive particles, Computer Physics Communications, 185 (2014) 2456-2466.
    [8] S. Eder, G. Feldbauer, D. Bianchi, U. Cihak-Bayr, G. Betz, A. Vernes, Applicability of macroscopic wear and friction laws on the atomic length scale, Physical review letters, 115 (2015) 025502.
    [9] S. Eder, U. Cihak-Bayr, A. Pauschitz, Nanotribological simulations of multi-grit polishing and grinding, Wear, 340 (2015) 25-30.
    [10] A.P. Markopoulos, I.K. Savvopoulos, N.E. Karkalos, D.E. Manolakos, Molecular dynamics modeling of a single diamond abrasive grain in grinding, Frontiers of Mechanical Engineering, 10 (2015) 168-175.
    [11]Karkalos N E, P Markopoulos A. Modeling nano-metric manufacturing processes with molecular dynamics method: a review[J]. Current Nanoscience, 2017, 13(1): 3-20.
    [12] Karkalos N E, Kundrák J, Markopoulos A P. Assessment of the performance of neural networks models for the prediction of surface roughness after grinding of steels[J]. Int. J. Artif. Intell, 2017, 15(1): 55-75.
    [13]Markopoulos A P, Karkalos N E, Papazoglou E L. Meshless Methods for the Simulation of Machining and Micro-machining: A Review[J]. Archives of Computational Methods in Engineering, 2019: 1-23.
    [14] J. Shimizu, L. Zhou, A. Muroya, H. Eda, Simulation and experimental analysis of abrasive wear in ultra high-speed grinding, in: Proceedings of WTC, 2001, pp. 3-7.
    [15]Zhu P Z, Qiu C, Fang F Z, et al. Molecular dynamics simulations of nanometric cutting mechanisms of amorphous alloy[J]. Applied Surface Science, 2014, 317: 432-442.
    [16]Wang J, Fang F, Zhang X. Nanometric cutting of silicon with an amorphous-crystalline layered structure: a molecular dynamics study[J]. Nanoscale research letters, 2017, 12(1): 41.
    [17] Liang Y C, Wang Z G, Chen M J, et al. Potential analysis in nanoturning of single crystal silicon using molecular dynamics[J]//Advanced Materials Research. Trans Tech Publications, 2011, 239: 3236-3239.
    [18] Pen H M, Liang Y C, Luo X C, et al. Multiscale simulation of nanometric cutting of single crystal copper and its experimental validation[J]. Computational Materials Science, 2011, 50(12): 3431-3441.
    [19] S. Plimpton, Fast Parallel Algorithms for Short-range Molecular Dynamics, J. Comput. Phys, 117 (1995) 1-19.
    [20] A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool, Modelling and Simulation in Materials Science and Engineering, 18 (2010) 01501
    相似文献
    引证文献
引用本文

任洁,吕明.重复加工对单晶镍表面形貌及亚表面缺陷的影响[J].稀有金属材料与工程,2021,50(8):2897~2904.[renjie, minglv. Influence of Tool Shape on Surface Quality of Monocrystalline Nickel Nanofabrication[J]. Rare Metal Materials and Engineering,2021,50(8):2897~2904.]
DOI:10.12442/j. issn.1002-185X.20200659

复制
文章指标
  • 点击次数:604
  • 下载次数: 1138
  • HTML阅读次数: 167
  • 引用次数: 0
历史
  • 收稿日期:2020-09-01
  • 最后修改日期:2021-01-12
  • 录用日期:2021-02-03
  • 在线发布日期: 2021-09-07
  • 出版日期: 2021-08-31