+高级检索
B2结构的铝-镝金属间化合物位错性质的研究
作者:
中图分类号:

O469

基金项目:

国家自然科学基金(51734007,51874236,51974237),中国博士后基金(2017M623329XB)


Study on {110} plane dislocation core structure and Peierls stress of B2 aldy
Fund Project:

China Postdoctoral Science Foundation

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    本文用截断近似法,研究了B2结构的铝-镝金属间化合物{110}面的位错性质。结果表明,伯格斯矢量为<110>方向的螺位错、刃位错和混合位错的芯宽度都要比<100>方向窄。它们相应的的不稳定层错能存在γus<110>大于γus<001>的关系,可见,不稳定层错能是影响具有B2结构的金属间化合物位错性质的重要因素之一。B2-AlDy滑移系为<111>{110}的位错,除了位错角为54.7°的位错以外,其他位错角的弹性应变能都要大于失配能,而且在相同周期内看,它们的相位总是相反;位错角为54.7°的位错,失配能比弹性应变能大,而且两者在相同周期内同相位。总体来说,B2-AlDy的{110}面上<100>、<110>和<111>方向的位错,随着位错角的减小(<111>方向的54.7°的位错除外),总能量以及相应的应力都依次增大。

    Abstract:

    Dislocation properties of {110} in Al-Dy intermetallic compound with B2 structure were studied by truncation approximation.The results show that the Burgess vector is <110>, the core width of the directional screw, edge and mixed dislocation should be greater than <100> irection. Their corresponding unstable stratification energy is present γus<110> < γus<001>. It can be seen that the unstable stratification energy is one of the important factors affecting the dislocation properties of intermetallic compounds with B2 structure. B2-AlDy slip system is <111>. For the dislocation of {110}, except for the dislocation with a dislocation Angle of 54.7°, the elastic strain energy of other dislocation angles is greater than the misfit energy, and their phases are always opposite in the same period.When the dislocation Angle is 54.7°, the misfit energy is greater than the elastic strain energy, and both of them are in phase in the same period. In general, for the {110} plane of B2-AlDy, <100>, <110> and <111> direction of dislocation, with the reduction of dislocation angle (except the <111> direction for the dislocation angle of 54.7°), the total energy and the corresponding stress increase in turn.

    参考文献
    [1] Ouyang Y, Zhong X, Du Y et al. Journal of Alloys and Compounds[J], 2006, 416(1): 148
    [2] Farkas D, Mutasa B, Vailhe C et al. Modelling and Simulation in Materials Science and Engineering[J], 1995, 3(2): 201
    [3] Vailhe C, Farkas D. Acta Materialia[J], 1997, 45(11): 4463
    [4] Shastry V, Farkas D. Intermetallics[J], 1998, 6(2): 95
    [5] Vailhe C, Farkas D. Journal of Materials Research[J],1997, 12: 2559
    [6] Pasianot R, Zie Z, Farkas D et al. Modelling and Simulation in Materials ence and Engineering[J], 1994, 2(3): 383
    [7] Schroll R, Finnis M W, Gumbsch P. Acta Materialia[J], 1998, 46(3): 919
    [8] Vitek V. Intermetallics[J], 1998, 6(7-8): 579
    [9] Ludwig M, Gumbsch P. Acta Materialia[J], 1998, 46(9): 3135
    [10] Schroll R, Vitek V, Gumbsch P. Acta Materialia[J], 1998, 46(3): 903
    [11] Gumbsch P, Schroll R. Intermetallics[J], 1999, 7(3-4): 447
    [12] Davidson D L. Materials ence Engineering A[J], 2000, 293(1-2): 281
    [13] Medvedeva N I , Mryasov O N , Gornostyrev Y N et al. Physical Review B Condensed Matter[J], 1996, 54(19):13506
    [14] Mryasov O N, Gornostyrev Y N, Schilfgaarde M V et al. Acta Materialia[J], 2002, 50(18): 4545
    [15] Li T , Morris J W , Chrzan D C . Physical Review B[J], 2006, 73: 024105
    [16] Lazar P , Podloucky R . Physical Review B[J], 2007, 5(2):024112
    [17] Gschneidner K A, Russell A M, Pecharsky A O et al. Nature Materials[J], 2003, 2(9): 587
    [18] Tao X, Ouyang Y, Liu H et al. Computational Materials ence[J], 2007, 40(2): 226
    [19] Tao X, Ouyang Y, Liu H et al. Physica B-condensed Matter[J], 2007, 399(1): 27
    [20] Morris J R, Ye Y, Lee Y et al. Acta Materialia[J], 2004, 52(16): 4849
    [21] Tao Xiaoma(陶小马). First-principles calculations of the thermodynamic properties of rare earths-aluminum and rare earths-magnesium alloys [D]. Central South University(中南大学), 2008
    [22] Pagare G, Srivastava V, Sanyal S. P et al. Physica B: Condensed Matter [J]. Physica B: Condensed Matter, 2011, 406(3): 449
    [23] Baenziger N C, Moriarty J L. Acta Crystallographica[J], 1961, 14(9): 948
    [24] Gschneidner K A, Calderwood F W. Bulletin of Alloy Phase Diagrams[J], 1988, 9(6): 673
    [25] Wang R , Wang S F, Wu X Z. Intermetallics[J], 2012, 26:57-61.
    [26] Wang S F. Chinese Physics[J], 2006, 15(6):1301
    [27] Hirth, JohnPrice. Wiley[M], 1983.
    [28] Li S R , Wang S R , Wang R .Physica B Physics of Condensed Matter[J], 2011, 406(23):4529
    [29] Wu Xiaozhi(吴小志). The Calculation of Dislocation Core Structure and Peierls Stress Based on Modification of Discreteness Effect [D]. Chongqing University(重庆大学),2009
    [30] Wang S F , Li S R , Wang R. European Physical Journal B[J], 2011, 83(1):15
    [31] Peierls R. Proceedings of the Physical Society[J], 1940, 52(1):34-37
    [32] Nabarro F R N. Acta Crystallographica SectionA: Foundations and advances[J]. 1968, 24: 581
    [33] Foreman A J , Jaswon M A , Wood J K .Proceedings of the Physical Society[J], 1951, 64(2):156
    [34] Kroupa F, Lejcek L. Czechoslovak Journal of Physics[J], 1972, 22(9): 813
    [35] Ohsawa K , Koizumi H , Kirchner H O K , et al. Philosophical Magazine A[J], 1994, 69(1):171-181
    [36] Wang J N. Acta Materialia[J], 1996, 44(4): 1541
    [37] Joos B, Duesbery M S . Physical review letters[J], 1997, 78(2):266-269
    [38] Lu G , Kioussisy N , Bulatov V V et al. Philosophical Magazine Letters[J], 2000, 80(10):675-682
    [39] Li S R , Wu X Z , Zhang T , et al. Journal of Electronic Materials[J], 2016, 45(10):1
    相似文献
    引证文献
引用本文

李绍蓉. B2结构的铝-镝金属间化合物位错性质的研究[J].稀有金属材料与工程,2021,50(3):867~875.[Li Shaorong. Study on {110} plane dislocation core structure and Peierls stress of B2 aldy[J]. Rare Metal Materials and Engineering,2021,50(3):867~875.]
DOI:10.12442/j. issn.1002-185X.20200744

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-09-23
  • 最后修改日期:2020-10-21
  • 录用日期:2020-10-23
  • 在线发布日期: 2021-04-02