+高级检索
粒度调控对钨阴极表面发射微区的影响
作者:
作者单位:

1.有研工程技术研究院有限公司;2.有研科技集团有限公司智能传感功能材料国家重点实验室

中图分类号:

TN104.1

基金项目:

国家重点研发计划专项项目(2017YFB0306000)


The influence of particle size control on emission micro-area oftungsten cathode surface
Author:
Affiliation:

State Key Laboratory of Advanced Materials for Smart Sensing,GRINM Group Co,Ltd

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了在微米尺度探究未分级钨粉、分级钨粉制备钨基体在阴极热电子发射性能上的差异,深入了解阴极表面微区电子发射过程和阴极发射机理,本文采用新型深紫外激光发射电子显微镜/热发射电子显微镜系统(DUV-PEEM/TEEM)对两种钨粉制备的阴极表面进行了光电子、热电子成像分析。结果显示,与未分级钨粉相比,分级钨粉制备钨基体的显微组织更加均匀,且闭孔率由1.44%降至0.47%;光电子+热电子联合成像精确得出两种阴极的发射均主要集中于孔隙及孔隙中的活性物质上;通过热电子图像对比及分析,分级钨粉制备阴极的热电子发射微区面积更大、分布更均匀;且在1050℃工作条件下,分级钨粉制备阴极的脉冲电流密度为30.79A/cm2,发射斜率为1.38;综合分析显示其具备更理想的本征热电子发射能力和发射均匀性,这对于了解阴极发射性能及改善热阴极制备工艺有一定的指导作用。

    Abstract:

    In order to research the cathodic thermionic emission performance difference between preparation of tungsten matrix used ungraded tungsten powder and graded tungsten powder on the micron scale, and to gain a deeper understanding of the electron emission process of the cathode surface micro-area and the cathode emission mechanism, a newly developed instrument aiming at meeting the special operation requirements of thermal dispenser cathode is used in this paper. This instrument called DUV-PEEM/TEEM combines the functions of deep ultraviolet laser photo-emission electron microscope and thermal-emission electron microscope. Thanks to the powerful functions of DUV-PEEM/TEEM, the photoelectron and thermoelectron image of prepared cathode from two tungsten powders was analyzed. The results showed that compared with the ungraded material tungsten powder, the microstructure of the tungsten matrix prepared by the graded tungsten powder is more uniform, and the closed cell ratio was reduced from 1.44% to 0.47%; the photoelectron and thermionic united imaging accurately showed that the emission of the two cathodes mainly located at the pores and active substances of pores; via thermal electron (TEEM) images, the thermal electron emission micro-area area of the cathode prepared by graded tungsten powder was larger and the distribution was more uniform than the cathode prepared by ungraded tungsten powder; and under the working condition of 1050℃, the pulse current density of the cathode prepared by graded tungsten powder was 30.79A/cm2, and the emission slope was 1.38, comprehensive analysis showed that it had more ideal intrinsic thermionic emission capability and emission uniformity, which has a certain guiding effect on understanding the cathode emission performance and improving the hot cathode preparation process.

    参考文献
    [1] Wang Wenxiang(王文祥). Microwave Engineering Technology(微波工程技术)[M]. Beijing: National Defense Industry Press, 2009: 520
    [2] Fang Rong(方荣), Lu Yuxin(陆玉新). Vacuum Electronics (真空电子技术)[J], 2015(1): 12
    [3]Wang Li(王力), Kuang. Yonggeng(邝用庚), Zhang Baohong(张保红) et al. Powder Metallurgy Industry (粉末冶金工业)[J], 2014, 24(04): 55
    [4] Wu Zhaohao(吴兆皓).Journal of Electronics Information Technology(电子与信息学报)[J], 1986(06): 44
    [5] Xia Yang(夏扬), Xie Yuanfeng(谢元锋), Jiang Heng(姜珩) et al. Vacuum Electronics (真空电子技术)[J], 2017(3): 42
    [6] Li Ji, Yu Zhiqiang, Shao Wensheng et al. Applied Surface Science[J], 2005, 251(1-4): 151
    [7] Barik R K, Bera A, Raju R S et al. Applied Surface Science[J], 2013, 276(7): 817
    [8] Zhou Zenglin(周增林), He Xueliang(何学良), Li Yan(李艳) et al.Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2019, 48(7): 2386
    [9] Li Rui, Qin Ming Li , Liu Chengcheng et al. Advanced Powder Technology[J], 2017: 1603
    [10] Li Baoqiang, Sun Zhiqiang, Jin Huacheng et al.International Journal of Refractory Metals and Hard Materials[J], 2016, 59: 105
    [11] Li Rui, Qin Mingli, Huang Hua et al. Advanced PowderTechnology[J], 2017, 28(12): 3158
    [12] Li Rui, Qin Mingli, Chen Zheng et al. Powder Technology[J], 2018, 339: 192
    [13] Wang Luyan(王芦燕), Li Caobing(李曹兵), Zhang Yuqing(张宇晴). Thermal Spray Technology(热喷涂技术) [J], 2019, 11(3): 70
    [14] Hu Ke(胡可), Qiu Zhentao(邱振涛), Yang Xinyu(杨新宇) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2019, 48(2): 608
    [15] Ren Feng(任峰), Yin Shengyi(阴生毅), Lu Zhipeng(卢志鹏) et al. Acta Physica Sinica(物理学报)[J], 2017 (18): 255
    [16] Yin Shengyi(阴生毅), Ren Feng(任峰),Lu Zhipeng(卢志鹏) et al. Journal of Electronics Information Technology(电子与信息学报)[J], 2018, 40(10): 254
    [17] Ren Feng(任峰), Yin Shengyi(阴生毅), Lu Zhipeng(卢志鹏) et al. Vacuum Electronics (真空电子技术)[J], 2019(3): 33
    [18] Cao Ning(曹凝), Fu Qiang(傅强), Bao Xinhe(包信和). Bulletin of the Chinese Academy of Sciences(中国科学院院刊)[J], 2012(01): 107
    [19] Kirkwood D M, Gross S J, Balk T J et al. IEEE Transactions on Electron Devices[J], 2018, 65(6): 2061
    [20] Fang Houmin(方厚民), Su Qiaoxiu(苏翘秀), Su Xuchun(苏煦春). Chinese Journal of Vacuum Science and Technology(真空科学与技术学报)[J], 1983(2): 91
    [21] Hu Hanquan(胡汉泉),Wang Qian(王迁). Vacuum Physics and Technology and Its Application in Electronic Devices. Volume II(真空物理与技术及其在电子器件中的应用.下册)[M].Beijing: National Defense Industry Press, 1985: 64
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

何学良,周增林,李艳,陈文帅,惠志林.粒度调控对钨阴极表面发射微区的影响[J].稀有金属材料与工程,2022,51(1):280~285.[He Xueliang, Zhou Zenglin, Li Yan, Chen Wenshuai, Hui Zhilin. The influence of particle size control on emission micro-area oftungsten cathode surface[J]. Rare Metal Materials and Engineering,2022,51(1):280~285.]
DOI:10.12442/j. issn.1002-185X.20210054

复制
文章指标
  • 点击次数:680
  • 下载次数: 1100
  • HTML阅读次数: 143
  • 引用次数: 0
历史
  • 收稿日期:2021-01-18
  • 最后修改日期:2021-02-25
  • 录用日期:2021-03-17
  • 在线发布日期: 2022-02-09
  • 出版日期: 2022-01-28