+高级检索
表面修饰对La0.6Sr0.4Co0.2Fe0.8O3-δ阴极性能 及稳定性的影响研究
作者:
作者单位:

宁波材料技术与工程研究所

基金项目:

国际科技创新合作重点专项(2017YFE0129300),国家自然科学基金青年基金(51702333),宁波市“科技创新2025”重大专项(2019B10043)的资助


Impact of surface modification on the performance and stability of La0.6Sr0.4Co0.2Fe0.8O3-δ cathode
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    本研究采用一步溶液浸渍法成功对La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)表面进行了La2NiO4+δ(LNO)纳米颗粒修饰。扫描电镜分析显示,LNO纳米颗粒均匀分布在LSCF表面,颗粒粒径约在50-250 nm之间。电化学测试表明,与空白LSCF相比,修饰了LNO的阴极极化电阻降低了41%~50%,并且稳定性有明显提高:在750℃保温约125 h后,其极化电阻仅增大了50.42%,而空白LSCF阴极则增大了76.89%。X射线衍射分析表明在750℃保温100 h后LNO-LSCF表面出现了La2SrOx相。X光电子能谱分析表明,长期保温100 h后,LNO-LSCF阴极的表面Sr含量比保温前减少了3.66%,而空白LSCF阴极则增多了27.95%,说明通过表面修饰LNO成功抑制LSCF表面的Sr偏析。

    Abstract:

    Different concentrations of La2NiO4+δ (LNO) nanoparticles were decorated on La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) surface through one-step infiltration. Scanning electron microscope showed that LNO nanoparticles were distributed uniformly on LSCF surface, with a size range 50–250 nm. Electrochemical test revealed that compared with the bare LSCF, polarization resistance of LSCF cathode decorated with LNO particles reduced by 41%~50%, and its stability was improved, where its polarization resistance has increased by 50.42% after annealing at 750℃ for about 125 h while that of bare one increased by 76.89%. Evidenced by X-ray powder diffraction, La2SrOx phase appeared in LNO-LSCF after 100 h annealing, which was one of the possible reasons for enhanced stability. X-ray photoelectron spectroscopy showed that after annealing for 100 h, the surface Sr content decreased by 3.66% compared to that before annealing, whereas that of the bare one increased by 27.95%, indicating that LNO modification can effectively suppress Sr surface segregation of LSCF.

    参考文献
    1. Brett, D.J., et al., Chem Soc Rev, 2008. 37(8): p. 1568-78.
    2. Mitsuda, K., et al., Journal of Applied Electrochemistry, 1993. 23: p. 19-25.
    3. Paffett, M.T., et al., Journal of Power Sources, 1991. 36(2): p. 137-153.
    4. Fujishiro, Y., Journal of the Ceramic Society of Japan, 2017. 125(12): p. 851-855.
    5. Nerat, M. and D. Juricic, 2016. 41(5): p. 3613-3627.
    6. Zhang, X.Q., et al., Applied Thermal Engineering, 2016. 108: p. 347-352.
    7. Liu, W., et al., Journal of Power Sources, 2020. 465.
    8. Yang, J., et al., ACS Appl Mater Interfaces, 2015. 7(51): p. 28701-7.
    9. Yang, J., et al., ACS Appl Mater Interfaces, 2015. 7(13): p. 7406-12.
    10. Gao, Z., et al., 2016. 9(5): p. 1602-1644.
    11. Jiang, S.P., International Journal of Hydrogen Energy, 2019. 44(14): p. 7448-7493.
    12. Pan, Z., et al., Journal of The Electrochemical Society, 2015. 162(12): p. F1316-F1323.
    13. Yu, Y., et al., Applied Surface Science, 2014. 323: p. 71-77.
    14. Develos-Bagarinao, K., et al., ECS Transactions, 2015. 68(1): p. 1003-1013.
    15. Zhao, L., et al., Journal of The Electrochemical Society, 2014. 161(6): p. F687-F693.
    16. Lee, S., et al., Electrochimica Acta, 2011. 56(27): p. 9904-9909.
    17. Zhao, L., S. Electrochemistry Communications, 2013. 37: p. 84-87.
    18. Ding, X., et al., International Journal of Hydrogen Energy, 2019. 44(39): p. 22122-22128.
    19. Ding, D., et al., Advanced Energy Materials, 2013. 3(9): p. 1149-1154.
    20. Du, Z., et al., Phys Chem Chem Phys, 2018. 20(33): p. 21685-21692.
    21. Lou, X., et al., Journal of Power Sources, 2010. 195: p. 419–424.
    22. Choi, M., J. Lee, and W. Lee, Journal of Materials Chemistry A, 2018. 6(25): p. 11811-11818.
    23. Nie, L., et al., Journal of Power Sources, 2010. 195(15): p. 4704-4708.
    24. Lou, X., et al., Solid State Ionics, 2009. 180(23-25): p. 1285-1289.
    25. Khoshkalam, M., et al., Journal of The Electrochemical Society, 2020. 167(2).
    26. Ding, X., et al., Electrochimica Acta, 2015. 163: p. 204-212.
    27. Ding, X., et al., Fuel Processing Technology, 2015. 135: p. 14-19.
    28. Hong, T., K.S. Brinkman, and C. Xia, ChemElectroChem, 2016. 3(5): p. 805-813.
    29. Li, B. and H. Metiu, Journal of Physical Chemistry C, 2010. 114(28): p. 12234-12244.
    30. Guldal, N.O., H.E. Figen, and S.Z. Baykara, Chemical Engineering Journal, 2017. 313: p. 1354-1363.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

蔡东民.表面修饰对La0.6Sr0.4Co0.2Fe0.8O3-δ阴极性能 及稳定性的影响研究[J].稀有金属材料与工程,2022,51(2):705~711.[蔡东民. Impact of surface modification on the performance and stability of La0.6Sr0.4Co0.2Fe0.8O3-δ cathode[J]. Rare Metal Materials and Engineering,2022,51(2):705~711.]
DOI:10.12442/j. issn.1002-185X.20210186

复制
文章指标
  • 点击次数:492
  • 下载次数: 1144
  • HTML阅读次数: 155
  • 引用次数: 0
历史
  • 收稿日期:2021-03-08
  • 最后修改日期:2021-05-12
  • 录用日期:2021-06-16
  • 在线发布日期: 2022-03-09
  • 出版日期: 2022-02-28