+高级检索
低温退火加工硬化Al-10% Mg合金的显微组织特点和力学行为
作者:
作者单位:

1.武汉理工大学 材料科学与工程学院,湖北 武汉 430070;2.江苏大学 材料科学与工程学院,江苏 镇江 212013

基金项目:

National Natural Science Foundation of China (Grant numbers: U1810108 and U1710124)


Microstructural Characteristics and Mechanical Behavior of Work-Hardened Al-10wt% Mg Alloy Subjected to Low Temperature Annealing
Author:
Affiliation:

1.School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China;2.School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China

Fund Project:

National Natural Science Foundation of China (U1810108, U1710124)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • | | | |
  • 文章评论
    摘要:

    研究了冷轧减薄率为75%的Al-10% Mg(质量分数)合金在75~150 ℃下退火的显微组织特点和力学行为。轧制态和退火态Al-10% Mg合金的特征是晶粒细长,位错密度高,Al3Mg2相含量极低,且无弥散分布的Al3Mg2相。随着退火温度的升高,细长晶粒的宽度增加,位错密度减小。在75~150 ℃退火后,相比于轧制态合金,其屈服强度降低8%~33%,极限抗拉伸强度降低1%~12%,延伸率增加16%~83%。此外,分析了各种强化机制对屈服强度的贡献,以及原有位错和Mg溶质对塑性的贡献。

    Abstract:

    The Al-10wt% Mg alloy was cold-rolled with the thickness reduction ratio of 75% followed by annealing at 75~150 °C, and its microstructure characteristics and mechanical behavior were investigated. The as-rolled and annealed Al-10wt% Mg alloys are characterized by elongated ultra-fine grains, high density of dislocations, a very small amount of Al3Mg2 phase, and no dispersed distribution of Al3Mg2 phase. With increasing the annealing temperature, the width of elongated ultra-fine grains is increased and the dislocation density is decreased. After annealing at 75~150 °C, compared with those of as-rolled alloys, the yield strength of annealed alloys is decreased by 8%~33%, the ultimate tensile strength is decreased by 1%~12%, and the elongation is increased by 16%~83%. The contributions of various strengthening mechanisms to yield strength and the contributions of preexisting dislocations and Mg solute to ductility were analyzed and discussed.

    参考文献
    [1] Chen Kehua, Liang Wei, Wang Shunqi et al. Rare Metal Materials and Engineering[J], 2010, 39(2): 352
    [2] Engler O. Materials Science and Engineering A[J], 2014, 618: 654
    [3] Lee S, Yeh J. Materials Science and Engineering A[J], 2007, 460-461: 409
    [4] Mostafaei M A. Journal of Alloys and Compounds[J], 2019, 811: 151 997
    [5] Ninomiya M, Ohte R, Uesugi T et al. Materials Letters[J], 2019, 245: 218
    [6] Zha M, Li Y J, Mathiesen R H et al. Materials Science and Engineering A[J], 2013, 586: 374
    [7] Zha M, Li Y J, Mathiesen R H et al. Acta Materialia[J], 2015, 84: 42
    [8] Huskins E L, Cao B, Ramesh K T. Materials Science and Engineering A[J], 2010, 527(6): 1292
    [9] Miller W S, Zhuang L, Bottema J et al. Materials Science and Engineering A[J], 2000, 280(1): 37
    [10] Chen Y J, Chai Y C, Roven H J et al. Materials Science and Engineering A[J], 2012, 545: 139
    [11] Zha M, Meng X T, Zhang H M et al. Journal of Alloys and Compounds[J], 2017, 728: 872
    [12] Jang D H, Park Y B, Kim W J. Materials Science and Engineering A[J], 2019, 744: 36
    [13] Courtney T H. Mechanical Behavior of Materials[M]. Waveland: Long Grove, 2000
    [14] Ni S, Wang Y B, Liao X Z et al. Scripta Materialia[J], 2011, 64(4): 327
    [15] Ma E, Wang Y M. Applied Physics Letters[J]. 2004, 85(21): 4932
    [16] Lee B H, Kim S H, Park J H et al. Materials Science and Engineering A[J], 2016, 657: 115
    [17] Feng L, Li Z W, Huang C. Metals[J], 2019, 9(7): 759
    [18] Liu Z B, Sun J N, Yan Z G et al. Materials Science and Engineering A[J], 2021, 806: 140 806
    [19] Wen X C, Guo L, Bao Q P et al. Journal of Alloys and Compounds[J], 2020, 832: 154 995
    [20] Valiev R Z, Enikeev N A, Murashkin M Y et al. Scripta Materialia[J], 2010, 63(9): 949
    [21] Alexander H P, Klug L. X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials[M]. New York: John Wiley and Sons, 1974
    [22] Williamson G K, Smallman R E. Philosophical Magazine[J], 1956, 1(1): 34
    [23] Smallman R E, Westmacott K H. Philosophical Magazine[J], 1957, 2(17): 669
    [24] Davis J R. Aluminium and Aluminum Alloys[M]. Cleveland: ASM International, 1993
    [25] Lumley R. Fundamentals of Aluminium Metallurgy: Production, Processing and Applications[M]. Cambridge: Woodhead Publishing, 2011
    [26] Dierke H, Krawehl F, Graff S et al. Computational Materials Science[J], 2007, 39(1): 106
    [27] Kovács Z, Lendvai J, V?r?s G. Materials Science and Engineering A[J], 2000, 279(1): 179
    [28] Prangnell P B, Hayes J S, Bowen J R et al. Acta Materialia[J], 2004, 52(11): 3193
    [29] Jazaeri H, Humphreys F J. Acta Materialia[J], 2004, 52(11): 3251
    [30] Ryen ?, Holmedal B, Nijs O et al. Metallurgical and Materials Transactions A[J], 2006, 37(6): 1999
    [31] Ma K K, Hu T, Yang H et al. Acta Materialia[J], 2016, 103: 153
    [32] Stoller R E, Zinkle S J. Journal of Nuclear Materials[J], 2000, 283-287(1): 349
    [33] Ashby M F. Philosophical Magazine[J], 1970, 21(170): 399
    [34] Cheng S, Spencer J A, Milligan W W. Acta Materialia[J], 2003, 51(13): 4505
    [35] Hughes D A, Hansen N. Acta Materialia[J], 2000, 48(11): 2985
    [36] Ni S, Wang Y B, Liao X Z et al. Scripta Materialia[J], 2011, 64(4): 327
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

散展翼,刘生发,刘志波,林耀军,刘满平.低温退火加工硬化Al-10% Mg合金的显微组织特点和力学行为[J].稀有金属材料与工程,2022,51(5):1550~1557.[San Zhanyi, Liu Shengfa, Liu Zhibo, Lin Yaojun, Liu Manping. Microstructural Characteristics and Mechanical Behavior of Work-Hardened Al-10wt% Mg Alloy Subjected to Low Temperature Annealing[J]. Rare Metal Materials and Engineering,2022,51(5):1550~1557.]
DOI:10.12442/j. issn.1002-185X.20210223

复制
文章指标
  • 点击次数:436
  • 下载次数: 1010
  • HTML阅读次数: 200
  • 引用次数: 0
历史
  • 收稿日期:2021-03-16
  • 最后修改日期:2021-04-30
  • 录用日期:2021-05-13
  • 在线发布日期: 2022-05-31
  • 出版日期: 2022-05-30