+高级检索
烧结方式对CoCrNi中熵合金组织及力学性能的影响
作者:
作者单位:

1.太原理工大学机械与运载工程学院;2.太原理工大学航空航天学院

基金项目:

国家自然科学基金资助(项目号12072220)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    采用机械合金化法(MA)球磨制备CoCrNi中熵合金原料粉末,结合放电等离子烧结(SPS)或高真空烧结制取CoCrNi中熵合金,研究了球磨时间以及退火对CoCrNi中熵合金原料粉末微观形貌、颗粒尺寸及相结构的影响规律,对不同烧结方式制备的合金块体进行微观结构及力学性能研究。结果表明:随着球磨时间的延长,各单质粉末颗粒尺寸不断减小并逐渐融合,在球磨25h后,原料粉末主要为FCC固溶体结构,还有少量的BCC相;在后续烧结过程中,少量BCC相发生相转变,组织中只有FCC相结构;退火烧结样品的弹性模量为6.57GPa,是真空烧结的1.55倍,屈服强度为279.28MPa,与真空烧结后样品的屈服强度相当,退火烧结的延伸率为35.97%,明显大于直接真空烧结;SPS烧结的块体合金表现出高达793.72MPa的屈服强度和61.08%的塑性应变,且维氏硬度达到399HV,与其它两种烧结方法相比,SPS在实现HEAs快速低温烧结方面更具潜力。

    Abstract:

    CoCrNi medium entropy alloy powder was prepared by mechanical alloying, in combination with discharge plasma sintering or high vacuum sintering, the bulk was prepared. The effects of milling time and annealing on the morphology, particle size and phase structure of CoCrNi medium entropy alloy powder were studied, The microstructure and mechanical properties of the alloy blocks prepared by different sintering methods were studied. The results show that: with the extension of milling time, the particle size of each elemental powder decreases and gradually merges. After milling for 25 h, the raw powder is mainly FCC solid solution structure, with a small amount of BCC phase; In the subsequent sintering process, a small amount of BCC phase changes, and only FCC phase structure exists in the structure. The elastic modulus of the annealed sample is 6.57 GPa, which is 1.55 times of that of the vacuum sintered sample. The yield strength of the annealed sample is 279.28 MPa, which is equivalent to that of the vacuum sintered sample. The elongation of the annealed sample is 35.97%, which is significantly higher than that of the direct vacuum sintered sample; The results showed that SPS sintered bulk alloy has a yield strength of 793.72MPa, a plastic strain of 61.08%, and a Vickers hardness of 399HV. Compared with the other two sintering methods, SPS has more potential in realizing rapid low temperature sintering of HEAs.

    参考文献
    [1] Cantor B , Audebert F , Galano M , et al. Novel Multicomponent Alloys[C]// Metastable, Mechanically Alloyed and Nanocrystalline Materials; Journal of Metastable and Nanocrystalline Materials; vols.24-25. University of York, UK, 2005.
    [2] YEH J W, CHEN S K, LIN S J, et al. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes [J]. Advanced Engineering Materials, 2004, 6(5): 299-303.
    [3] D.B. Miracle,O.N. Senkov. A critical review of high entropy alloys and related concepts[J]. Acta Materialia,2017,122.
    [4] J.-P. Couzinié,O.N. Senkov,D.B. Miracle,G. Dirras. Comprehensive data compilation on the mechanical properties of refractory high-entropy alloys[J]. Data in Brief,2018,21.
    [5] HUANG H, WU Y, HE J, et al. Phase-Transformation Ductilization of Brittle High-Entropy Alloys via Metastability Engineering [J]. Advanced Materials, 2017, 29(30):
    [6] Suihe Jiang,Hui Wang,Yuan Wu,Xiongjun Liu,Honghong Chen,Mengji Yao,Baptiste Gault,Dirk Ponge,Dierk Raabe,Akihiko Hirata,Mingwei Chen,Yandong Wang,Zhaoping Lu. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation[J]. Nature: International weekly journal of science,2017,544(7651).
    [7] C.W. Shao,P. Zhang,Y.K. Zhu,Z.J. Zhang,J.C. Pang,Z.F. Zhang. Improvement of low-cycle fatigue resistance in TWIP steel by regulating the grain size and distribution[J]. Acta Materialia,2017,134.
    [8] K. Jin,C. Lu,L.M. Wang,J. Qu,W.J. Weber,Y. Zhang,H. Bei. Effects of compositional complexity on the ion-irradiation induced swelling and hardening in Ni-containing equiatomic alloys[J]. Scripta Materialia,2016,119.
    [9] Xing-Wu Qiu. Microstructure and properties of AlCrFeNiCoCu high entropy alloy prepared by powder metallurgy[J]. Journal of Alloys and Compounds,2013,555.
    [10] Yong Zhang,Ting Ting Zuo,Zhi Tang,Michael C. Gao,Karin A. Dahmen,Peter K. Liaw,Zhao Ping Lu. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science,2014,61.
    [11] Zhiqiang Fu,Lin Jiang,Jenna L. Wardini,Benjamin E. MacDonald,Haiming Wen,Wei Xiong,Dalong Zhang,Yizhang Zhou,Timothy J. Rupert,Weiping Chen,Enrique J. Lavernia. A high-entropy alloy with hierarchical nanoprecipitates and ultrahigh strength[J]. Science Advances,2018,4(10).
    [12] Igor Moravcik,Jan Cizek,Zuzana Kovacova,Jitka Nejezchlebova,Michael Kitzmantel,Erich Neubauer,Ivo Kubena,Vit Hornik,Ivo Dlouhy. Mechanical and microstructural characterization of powder metallurgy CoCrNi medium entropy alloy[J]. Materials Science Engineering A,2017,701.
    [13] Bernd Gludovatz,Anton Hohenwarter,Keli V. S. Thurston,Hongbin Bei,Zhenggang Wu,Easo P. George,Robert O. Ritchie. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures[J]. Nature Communications,2016,7(1).
    [14] 朱德智,吴吉鹏,刘是文.放电等离子烧结制备低密度AlTiCrNiCu高熵合金及其组织性能[J].稀有金属材料与工程,2020,49(11):3875-3881.
    [15] S. Praveen,Jae Wung Bae,Peyman Asghari-Rad,Jeong Min Park,Hyoung Seop Kim. Annealing-induced hardening in high-pressure torsion processed CoCrNi medium entropy alloy[J]. Materials Science Engineering A,2018,734.
    [16] 漆陪部,梁秀兵,仝永刚,陈永雄,张志彬.球磨时间对机械合金化制备NbMoTaW高熵合金粉末的影响[J].稀有金属材料与工程,2019,48(08):2623-2629.
    [17] 畅海涛,霍晓峰,李万鹏,杨涛,黄志青,武保林,段国升,杜兴蒿.高熵合金强化机制的研究进展[J].稀有金属材料与工程,2020,49(10):3633-3645.
    [18] 冯月明,姚百胜,毕台飞,等. 中熵合金力学性能研究进展[J]. 焊管,2021,44(1):25-31.
    [19] Y.B. Peng,W. Zhang,X.L. Mei,H.J. Wang,M.Y. Zhang,L. Wang,X.F. Li,Y. Hu. Microstructures and mechanical properties of FeCoCrNi-Mo High entropy alloys prepared by spark plasma sintering and vacuum hot-pressed sintering[J]. Materials Today Communications,2020,24
    [20] FAN Y H, ZHANG Y P, GUAN H Y, et al. AlNiCrFexMo0.2CoCu High Entropy Alloys Prepared by Powder Metallurgy [J]. Rare Metal Mat Eng, 2013, 42(6): 1127-9.
    [21] 刘咏,曹远奎,吴文倩,等. 粉末冶金高熵合金研究进展[J]. 中国有色金属学报,2019,29(9):2155-2184.
    [22] 阮建明,黄培云.粉末冶金原理[M]北京,机械工业出版社.2012.246-254
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张超,刘杰,王晓花,马胜国,王志华.烧结方式对CoCrNi中熵合金组织及力学性能的影响[J].稀有金属材料与工程,2022,51(7):2673~2680.[zhangchao, liujie, wangxiaohua, mashengguo, wangzhihua. Effect of sintering methods on Microstructure and mechanical properties of CoCrNi medium entropy alloy[J]. Rare Metal Materials and Engineering,2022,51(7):2673~2680.]
DOI:10.12442/j. issn.1002-185X.20210566

复制
文章指标
  • 点击次数:466
  • 下载次数: 1078
  • HTML阅读次数: 98
  • 引用次数: 0
历史
  • 收稿日期:2021-07-01
  • 最后修改日期:2021-07-08
  • 录用日期:2021-07-15
  • 在线发布日期: 2022-07-29
  • 出版日期: 2022-07-27