+高级检索
2219铝合金动态压缩下应变率敏感性行为研究
作者单位:

华中科技大学

基金项目:

湖北省重点研发计划项目(2020BAB139),国家自然科学基金面上项目(51975229),武汉市应用基础前沿项目(2020010601012178)


Strain rate sensitivity behavior of 2219 aluminum alloy under dynamic compression
Author:
Affiliation:

State Key Laboratory of Materials Processing and Die Mould Technology,School of Materials Science and Engineering,Huazhong University of Science and Technology

Fund Project:

The Key Research and Development Plan Projects in Hubei Province (2020BAB139), The National Natural Science Foundation of China (General Program) (51975229), The Application Foundation Frontier Project of Wuhan (2020010601012178)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为了研究2219铝合金的应变率敏感性行为,采用分离式霍普金森冲击压杆装置(SHPB)对两种热处理状态(T4态和T6态)2219铝合金进行了动态压缩实验,并利用金相显微镜(OM)和X射线衍射(XRD)对压缩后的试样进行了显微分析。研究发现两种热处理状态下材料应变率超过2000 s-1时,材料的流动应力显著下降,即出现显著的应变率软化行为。基于应变率敏感性行为随真实应变及应变率的二维等高线图,发现在高应变量、高应变率条件下材料表现出负应变率敏感性行为,流动应力随着应变量与应变率的提升而下降。通过理论计算及微观组织表征,发现温升软化和变形带导致的软化作用,是材料在高应变量、高应变率表现出负应变率敏感性行为的重要原因。

    Abstract:

    In order to study the dynamic mechanical properties of 2219 aluminum alloy, dynamic compression experiments were carried out through split Hopkinson impact pressure bar (SHPB) equipment on 2219 aluminum alloy in two heat treatment states (T4 and T6). The microstructure of the obtained samples is analyzed by OM and XRD. It is found that the flow stress of the material decreases significantly when the strain rate exceeds 2000 s-1 under the two heat treatment conditions, that is, a significant strain rate softening behavior occurs. Based on the two-dimensional contour map of strain rate sensitivity behavior with real strain and strain rate, it is found that the material exhibits negative strain rate sensitivity behavior under the condition of high strain and high strain rate, and the flow stress decreases with the increase of strain and strain rate. Through theoretical calculation and microstructure characterization, it is found that the softening effect caused by temperature rise softening and lamellar grain breakage is an important reason for the negative strain rate sensitivity behavior of the material at a high strain rate and high strain rate.

    参考文献
    [1] Wang Jing(王敬), Liang Qiang(梁强), Li Yongliang(李永亮). Ordnance Material Science And Engineering(兵器材料科学与工程)[J],2020,43(05):95
    [2] Wan Shengxiang(万升祥).Thesis for Master(硕士论文)[D].Harbin: Harbin University of Science and Technology,2016.
    [3] Huang Zide(黄自德). Thesis for Master(硕士论文) [D].Dalin: Dalian University of Technology,2017
    [4] Huang Pan(黄攀), Huang Liang(黄亮), Su Hongliang(苏红亮) et al. Rare Metal Materials and Engineering(稀有金属材料与工程) [J],2019,48(9):2987
    [5] Tao Jiahui(陶家辉), Gu Boqin(顾伯勤), Chen Lili(陈立立) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J].稀有金属材料与工程,2019,48(11):3571
    [6] Ye T, Li L, Liu X et al. Materials Science and Engineering:A[J],2016,666:149
    [7] Jin Feixiang(金飞翔), Man Gu(谷曼), Zhong Zhiping(钟志平) et al. Journal of Plasticity Engineering(塑性工程学报) [J],2020,27(07):139
    [8] Guo Y, Zhang M, Wang Z et al. Materials Science and Engineering:A[J], 2020, 806(7):140691
    [9] Wu Gaohui(武高辉), Zhu Dezhi(朱德智), Chen Guoqing(陈国钦) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J].2010,39(02):264
    [10] Shi X H, Fan Z Y, Cao Z H et al. Materials Letters[J],2021, 284:128942
    [11] Yu H , Y Jin, Hu L et al. Materials Science and Engineering:A[J], 2020:139880
    [12] Zhang Ziqun(张子群), Jiang Zhaoliang(姜兆亮), Wei Qingyue(魏清月). Journal of Materials Engineering(材料工程)[J],2017,45(10):47
    [13] Huang Dan(黄丹), Li Zhu(李卓), Zhou Xudong(周旭东) et al.Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2021,50(01):242
    [14] Tiamiyu A A, Basu R, Odeshi A G et al. Materials Science and Engineering:A[J], 2015, 636(jun.11):379
    [15] Zhang H, Li L, D Yuan et al. Materials Characterization[J], 2007,58(2):168
    [16] Zhang W, He L, Lu Z et al. Materials Science and Engineering:A[J],2020:139430
    [17] Liu Wei(刘伟), Liu Wei(刘巍), Zhou Wenjie(邹文杰) et al. Heat Treatment of Metals (金属热处理)[J],2021,46(02):168
    [18] Sun Daxiang(孙大翔), Dong Yu(董宇), Ye Lingying(叶凌英) et al. Journal of Materials Engineering (材料工程)[J],2021,49(02):79
    [19] Yang Yutong(杨雨童), Luo Rui(罗锐), Cheng Xiaonong(程晓农) et al. The Chinese Journal of Nonferrous Metals (中国有色金属学报)[J],2019,29(12):2700
    [20] Zhao M, Huang L, Li C et al. Materials Science Engineering:A[J],2021,810(4):141031
    [21] Yan S L, Yang H, Li H W et al. Journal of Alloys and Compounds[J],2016,688:776
    [22] Meyers M.A. Dynamic Behavior of Materials[M].John Wiley Sons,1994:310
    [23] Xu Heng Jun. Materials Science and Fundamentals(材料科学基础) [M]. Beijing University of Technology Press,2001:385
    [24] Hazif R L, Poirer J P. Acta Metallurgica[J],1975,23(7):865
    [25] Li X, Xi W, Yan H et al. Materials Science and Engineering:A[J],2019,753(APR.10):59
    [26] Son H W, Cho C H, Lee J C et al. Journal of Alloys and Compounds[J],2019,814(C):152311
    相似文献
    引证文献
引用本文

徐毅珂,黄亮,王泽宇,徐佳辉,张会萍,李建军.2219铝合金动态压缩下应变率敏感性行为研究[J].稀有金属材料与工程,2022,51(8):2963~2970.[Xu Yike, Huang Liang, Wang Zeyu, Xu Jiahui, Zhang Huiping, Li Jianjun. Strain rate sensitivity behavior of 2219 aluminum alloy under dynamic compression[J]. Rare Metal Materials and Engineering,2022,51(8):2963~2970.]
DOI:10.12442/j. issn.1002-185X.20210614

复制
文章指标
  • 点击次数:516
  • 下载次数: 1320
  • HTML阅读次数: 116
  • 引用次数: 0
历史
  • 收稿日期:2021-07-13
  • 最后修改日期:2021-09-12
  • 录用日期:2021-09-26
  • 在线发布日期: 2022-09-05
  • 出版日期: 2022-08-29