+高级检索
TiB2颗粒TiB晶须混杂增强铜基复合材料导电率有限元模拟
作者单位:

西安理工大学

基金项目:

国家自然科学基金资助(项目号51834009 51974244 and 51605382)陕西省重点研发计划项目(项目号2020ZDLGY12-07)


Simulation of electrical conductivity of (TiB2p+TiBw)/Cu composites
Fund Project:

National Natural Science Foundation of China (No. 51834009 51974244 and 51605382) and Key Research and Development Program of Shaanxi (No. 2020ZDLGY12-07)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [12]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    本文建立了TiBw/Cu、(TiB2p+TiBw)/Cu、TiB2p /Cu复合材料的三维细观结构有限元模型,基于ABAQUS非耦合的热电分析理论,通过有限元数值模拟方法揭示了复合材料微观结构特征参量与宏观导电性能之间的定量关系。结果表明:TiB2颗粒体积分数为导电率主要影响因素,随体积分数增大导电率逐步减小,颗粒粒径大小对导电率影响不显著;TiB晶须体积分数和晶须取向角为导电率主要影响因素,晶须取向角平行于电流方向时导电率最好,垂直于电流方向时的导电率最差。在颗粒晶须混杂增强复合材料中,增强体体积分数和晶须取向角为导电率的主要影响因素,增强体种类对导电率影响较小。本文为颗粒晶须混杂增强铜基复合材料导电率计算提供了新的思路和方法,对颗粒和晶须增强复合材料混杂设计提供依据。

    Abstract:

    Three-dimensional meso-structural finite element models of TiBw/Cu, (TiB2p + TiBw)/Cu and TiB2p /Cu composites were built. Based on the Abaqus uncoupled thermoelectric analysis theory, the quantitative relationship between the microstructure characteristic parameters and the macroscopic electrical conductivity of the composites was revealed by simulation method.The results show that the volume fraction of TiB2 particles is the main factor affecting the electrical conductivity, and the electrical conductivity gradually decreases with the increase of the volume fraction,while the particle size has no significant effect on the electrical conductivity. The volume fraction and the orientation Angle of TiB whisker are the main factors affecting the electrical conductivity. When the whisker orientation Angle is parallel to the current direction, the electrical conductivity is the best, and when the whisker orientation Angle is perpendicular to the current direction, the electrical conductivity is the worst. In the (TiB2p+TiBw)/Cu composites,the volume fraction of the whisker and the whisker orientation Angle are the main factors affecting the electrical conductivity, and the type of the whisker has little effect on the conductivity.This paper provides a new idea and method for the electrical conductivity prediction of (TiB2p + TiBw)/Cu composites, and provides a basis for the hybrid design of the composite with particles and whiskers.

    参考文献
    [1] Habibi A. Ketabchi M. Eskandarzadeh M. Nano-grained pure copper with high-strength and high-conductivity produced by equal channel angular rolling process[J]. J Mater Process Techn, 2011, 211(6): 1085
    [2] Hosseini S A, Manesh H D. High-strength, high-conductivity ultra-fine grains commercial pure copper produced by ARB process[J]. Mater Des, 2009,30(8): 2911
    [3] 于竹丽, 朱和国. 铜基复合材料的导电性研究现状[J]. 材料导报, 2015, 29(S2): 345-349
    [4] Shuhua Liang, Weizhen Li, Yihui Jiang, Fei Cao, Gezhi Dong, Peng Xiao. Microstructures and properties of hybrid copper matrix composites reinforced by TiB whiskers and TiB2 particles[J]. Journal of Alloys and Compounds, 2019, 797
    [5] 国秀花, 宋克兴等. 颗粒增强Cu基复合材料的导电性[J]. 特种铸造及有色合金, 2013,33(11): 992-995
    [6] 姜艳青. 原位自生TiB2/Cu复合材料制备及性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2007
    [7] 张剑平,艾云龙等. 烧结方式对TiB2/Cu复合材料组织和性能的影响[J]. 特种铸造及有色合金, 2012,32(05): 469-472
    [8] 帅歌旺, 张萌, 高强度、高导电铜合金及铜基复合材料研究进展[J]. 特种铸造及有色合金, 2005, 25(9): 534
    [9] 张胜利.双粒径TiB2颗粒增强铜基复合材料制备及其性能研究[D].河南: 河南科技大学, 2019
    [10] 张祥峰, 国秀花等. 不同粒径TiB2/Cu复合材料热传导模拟与实验研究[J/OL]. 复合材料学报: 1-13[2020-03-16]
    [11] 林鹤云,王念春.电接触合金材料导电率的三维有限元分析[J].东南大学学报(自然科学版),2002(04):627-630.
    [12] K. S. Ravi Chandran,K. B. Panda,S. S. Sahay. TiB w -reinforced Ti composites: Processing, properties, application prospects, and research needs[J]. JOM,2004,56(5).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘楠,刘圆聪,姜伊辉,曹飞,罗斌,梁淑华. TiB2颗粒TiB晶须混杂增强铜基复合材料导电率有限元模拟[J].稀有金属材料与工程,2022,51(2):559~565.[LIU NAN, LIU YUAN CONG, JIANG YI HUI, CAO FEI, LUO BING, Liang Shuhua. Simulation of electrical conductivity of (TiB2p+TiBw)/Cu composites[J]. Rare Metal Materials and Engineering,2022,51(2):559~565.]
DOI:10.12442/j. issn.1002-185X.20210662

复制
文章指标
  • 点击次数:766
  • 下载次数: 1302
  • HTML阅读次数: 169
  • 引用次数: 0
历史
  • 收稿日期:2021-07-23
  • 最后修改日期:2021-09-03
  • 录用日期:2021-09-22
  • 在线发布日期: 2022-03-09
  • 出版日期: 2022-02-28