+高级检索
气–液反应激光原位增材制造TiN增强钛基复合材料组织结构及力学性能研究
作者:
作者单位:

1.湘潭大学 物理与光电工程学院;2.中国科学院重庆绿色智能技术研究院 智能增材制造技术与系统重庆市重点实验室

中图分类号:

146.23

基金项目:

国家自然科学基金资助(项目号51901220);重庆市自然科学基金面上项目(项目号cstc2021jcyj-msxmX0435)


Microstructure and mechanical properties of in-situ laser additive manufacturing of TiN reinforced Ti6Al4V matrix composites based on gas–liquid reaction
Author:
Affiliation:

1.Chongqing Key Laboratory of Additive Manufacturing Technology and Systems,Chongqing Institute of Green and Intelligent Technology,Chinese Academy of Sciences;2.School of Physics and Optoelectronics,Xiangtan University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [44]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    本文采用选区激光熔化(SLM)工艺制备了Ti6Al4V合金,并系统研究了激光能量密度(LED)对其致密度、显微硬度、压缩强度和塑性的影响。获得了SLM制备Ti6Al4V合金的最佳LED工艺窗口为84.8–163.6 J/mm3。在最佳LED窗口内,在不同N2浓度(3 vol.%、10 vol.%、30 vol.%)工作气氛中,以气–液反应方式SLM制备了TiN为增强相的Ti6Al4V基复合材料。该新工艺制备复合材料的原理为:钛合金高温熔池附近的N2裂解为N原子/离子,N与熔融状态的Ti原位反应生成均匀分散的TiN增强相,并与熔化–凝固过程中的Ti合金基体复合,最终以SLM逐层成形的方式制备出TiN增强钛基复合材料。本文探究了N2浓度对钛基复合材料组织结构和力学性能的影响规律。其中,3 vol.%的N2工作气氛中SLM成形的复合材料的强度和塑性同时得到提升,阐述了其强韧化机理。

    Abstract:

    In this study, the Ti6Al4V alloys were fabricated by selective laser melting (SLM) technology. The effect of laser energy density (LED) on the relative density, micorhardness, compression strength and plasticity of the Ti6Al4V alloys was systematically studied. The optimum LED processing window for SLM of Ti6Al4V alloys was in the range of 84.8–163.6 J/mm3. In the optimum LED window, the TiN reinforced Ti6Al4V matrix composites were fabricated by SLM in different N2 concentration (3 vol.%, 10 vol.% and 30 vol.%) atmospheres based on gas–liquid reaction. The principle of the novel technology for fabricating of the composites is as follows: decomposition of N2 near the Ti6Al4V melt pool generates N atoms/ions, the gaseous N atoms/ions react with liquid Ti atoms to in-situ synthesize uniformly distributed TiN reinforcements which combine with the Ti6Al4V matrix during melting–solidification, finally, the TiN reinforced Ti6Al4V matrix composites are built by SLM layer-by-layer. Effect of N2 concentration on the microstructure and mechanical properties of the Ti6Al4V matrix composites was researched. The composite fabricated by SLM in 3 vol.% N2 atmosphere exhibited a good combination of high strength and high plasticity. The strengthening and toughening mechanisms were studied.

    参考文献
    [1] Liu Y J, Zhang J S, Liu X C et al. Materials Science and Engineering: A[J], 2021,822:141696
    [2] Zhao Chunling(赵春玲), Li Wei(李维), Wang Qiang(王强) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2021,50:2841
    [3] J-P.Kruth, P.Mercelis, Vaerenbergh J V et al. Rapid Prototyping Journal [J],2005,11:44
    [4] Zhang L-C, Attar H. Advanced Engineering Materials[J],2016,18:463
    [5] Zherebtsov S V, Kudryavtsev E A, Salishchev G A et al. Acta Materialia[J],2016,121:152
    [6] Wei W-H, Shao Z-N, Shen J et al. Materials Science and Technology[J],2017,34:191
    [7] Zong Xuewen(宗学文), Zhang Jian(张健), Lu Bingheng(卢秉恒) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2021,50:2106
    [8] Sanyal S, Shukla M, Dandapat N et al. Journal of Non-Crystalline Solids[J],2018,500:22
    [9] Gu D, Hagedorn Y-C, Meiners W et al. Acta Materialia[J],2012,60:3849
    [10] Zhou S, Zhao Y, Wang X et al. Journal of Alloys and Compounds[J],2020,820:153422
    [11] Kundu S, Hussain M, Kumar V et al. The International Journal of Advanced Manufacturing Technology[J],2018,97:2635
    [12] Wang Haojie(汪豪杰), Yang Fang(杨芳), Guo Zhimeng(郭志猛) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2021,50:709
    [13] Thijs L, Verhaeghe F, Craeghs T et al. Acta Materialia[J],2010,58:3303
    [14] Gu D, Shen Y, Lu Z. Materials Letters[J], 2009,63:1577
    [15] Liu Fencheng(刘奋成), Hu Wenwei(胡文伟), Jia Jiongyu et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2021,50:3684
    [16] Chan K S, Koike M, Mason R L et al. Metallurgical and Materials Transactions A[J],2012,44:1010
    [17] Facchini L, Magalini E, Robotti P et al. Rapid Prototyping Journal[J],2010,16:450
    [18] Gao Ruining(高芮宁), Xiong Yinze(熊胤泽),Zhang Hang(张航) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2021,50:249
    [19] Van Bael S, Chai Y C, Truscello S et al. Acta Biomater[J],2012,8:2824
    [20] Kasperovich G, Haubrich J, Gussone J et al. Materials Design[J],2016,105:160
    [21] Osakada K, Shiomi M. International Journal of Machine Tools and Manufacture[J],2006,46:1188
    [22] Shichao. L, Pengfei. L, Min. L et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2021,50:3543
    [23] Tong J, Bowen C R, Persson J et al. Materials Science and Technology[J] 2016,33:138
    [24] Wang J, Guo X, Xiao L et al. Acta Metallurgica Sinica (English Letters)[J],2014,27:205
    [25] Patil A S, Hiwarkar V D, Verma P K et al. Journal of Alloys and Compounds[J],2019,777:165
    [26] Wei W, Wu W, Fan S et al. Materials Design[J],2021,202:109578
    [27] Mohseni H, Nandwana P, Tsoi A et al. Acta Materialia[J],2015,83:61
    [28] Yilbas B S, Akhtar S, Aleem B J A et al. Applied Surface Science[J],2010,257:531
    [29] Lisiecki A. Materiali in tehnologije[J], 2017,51:577
    [30] Yang Guangn(杨光), Wang Bingyu(王冰玉), Zhao Shuo(赵朔) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2021,50:2641
    [31] Abboud J H. Surface and Coatings Technology[J],2013,214:19
    [32] Wei W, Zhang Q, Wu W et al. Scripta Materialia[J],2020,187:310
    [33] Ma Dawei(马大卫). Foundry Technology(铸造技术)[J], 2021,42:460
    [34] Sun Jing(孙靖), Li Peng(李鹏), Zhu Xiaogang(朱小刚) et al. Applied Laser(应用激光)[J], 2018,38:908
    [35] Li Jishuai(李吉帅), Qi Wenjun(戚文军), Li Yajiang(李亚江) et al. Materials Reports(材料导报B:研究篇)[J],2017,31:65
    [36] Sun Xiaofeng(孙小峰), Huang Jie(黄洁), Rong Ting(荣婷) et al. MW Metal Forming(金属加工)[J],2021,8:1
    [37] Ye Xiu(叶秀), Wu Meiping(武美萍), Miao Xiaojin(缪小进) et al. Surface Technology(表面技术)[J],2021,8:301
    [38] Kruth J P, Levy G, Klocke F et al. CIRP Annals[J],2007,56:730
    [39] Chang F, Gu D, Dai D et al. Surface and Coatings Technology[J],2015,272:15
    [40] Baskin K, Flores K M, Weisensee P B. International Journal of Heat and Mass Transfer[J],2020,146:118830
    [41] Li H, Yang Z, Cai D et al. Materials Design[J],2020,185:108245
    [42] Qiu C, Adkins N J E, Attallah M M. Materials Science and Engineering: A[J],2013,578:230
    [43] Miao Run(苗润), Liu Bingliang(刘兵亮), Ren Siyu(任思雨) et al. Journal of Netshape Forming Engineering(精密成形工程)[J],2021,3:25
    [44] Lin J, Guo D, Lv Y et al. Materials Design[J],2018,157:200
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

朱磊,吴文杰,范树迁,张凯旺,魏文猴.气–液反应激光原位增材制造TiN增强钛基复合材料组织结构及力学性能研究[J].稀有金属材料与工程,2022,51(6):2151~2160.[Zhu Lei, Wu Wenjie, Fan Shuqian, Zhang Kaiwang, Wei Wenhou. Microstructure and mechanical properties of in-situ laser additive manufacturing of TiN reinforced Ti6Al4V matrix composites based on gas–liquid reaction[J]. Rare Metal Materials and Engineering,2022,51(6):2151~2160.]
DOI:10.12442/j. issn.1002-185X.20211001

复制
文章指标
  • 点击次数:482
  • 下载次数: 1404
  • HTML阅读次数: 103
  • 引用次数: 0
历史
  • 收稿日期:2021-11-15
  • 最后修改日期:2022-01-22
  • 录用日期:2022-02-09
  • 在线发布日期: 2022-07-06
  • 出版日期: 2022-06-29