+高级检索
基于摩擦挤压增材制造的单道多层6061铝合金组织特征与力学性能
作者:
作者单位:

天津大学 材料科学与工程学院

中图分类号:

TG453+.9

基金项目:

国家自然科学基金面上项目(项目号51775371和52175356)天津市自然科学基金重点资助项目(项目号19JCZDJC39200)


Microstructure features and mechanical properties of single-pass multilayer 6061 aluminium alloy based on friction extrusion additive manufacturing
Author:
Affiliation:

School of Materials Science and Engineering,Tianjin University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    本文成功实现6061铝合金摩擦挤压增材制造(Friction extrusion additive manufacturing,FEAM)工艺,对单道1层、2层及9层增材试样组织特征、界面连接机制及力学性能进行了分析讨论。试验表明:在主轴转速600 rpm和移动速度300 mm/min下可获得完全致密无内部缺陷的每层厚度和宽度分别约为4 mm和32 mm的6061单道1层、2层及9层增材试样。增材组织均匀完全由细小等轴晶组成,单道1层和单道9层平均晶粒尺寸分别为5.63±1.66 μm和8.31±1.68 μm,与填充棒料母材比较晶粒(24.21±5.3 μm)明显细化。单道1层增材组织内部强化相b2几乎全部溶解而b′发生粗化,平均硬度为母材的64.7%。增材界面实现冶金连接其晶粒细化最显著,由于强化相b2及b′几乎全部溶解,其硬度降低为母材的56.9%,单道9层试样因多次热循环降低为母材的50.6%。单道9层增材试样具有优良的强韧匹配,沿增材层长度方向平均抗拉强度和断后伸长率分别为194 MPa和34.6%,沿增材层垂直方向平均拉伸强度和断后伸长率分别为151.0 MPa和10.4%。

    Abstract:

    The friction extrusion additive manufacturing (FEAM) process of 6061 aluminium alloy was successfully performed. The microstructure features, interface bonding mechanism and mechanical properties of single-pass one-layer, two-layer and nine-layer additive specimens were discussed in detail. It is found that under the process conditions of a spindle speed of 600 rpm and a moving speed of 300 mm/min, completely dense and defect-free 6061one-layer, two-layer and nine-layer additive specimens with layer thickness and width of 4 mm and 32 mm are obtained. The uniform microstructures of additive specimens are composed of fine and uniform equiaxed grains. The average grain size of one-layer and nine-layer additive specimens are 5.63±1.66 μm and 8.31±1.68 μm, which are significantly refined compared with the bar base metal (24.21±5.3 μm) . In the microstructures of single-pass one-layer additive specimen, the main strengthening phase b2 is almost completely dissolved and phase b′ is coarsed, so the average hardness is 64.7% of the bar base metal. The additive interface realizes metallurgical bonding and has the most significant degree of grain refinement. The hardness of interface reduce to 56.9% of the bar base metal because the strengthening phases b2 and b′ are almost completely dissolved. The average hardness of nine-layer specimen after multiple thermal cycles is 50.6% of the base metal. The nine-layer additive specimen exhibits excellent strength and toughness matching. The average tensile strength and elongation along the length direction of the additive specimen are 194 MPa and 34.6%, respectively, and the average tensile strength and elongation along the vertical direction of the additive specimen is 151.0 MPa and 10.4%, respectively.

    参考文献
    [1] Gao Qingwei(郜庆伟), Zhao Jian(赵健), Shu Fengyuan(舒凤远)et al. Journal of Materials Engineering[J].2019, 47; 438 (11): 36.
    [2] Li Chengde, Gu Huimin, Wang Wei, et al. Rare Metal Materials and Engineering[J]. 2020,49(6):1860.
    [3] Meng X, Huang Y, Cao J, et al. Progress in Materials Science[J]. 2021, 115: 100706.
    [4] Singh K, Singh G, Singh H. Journal of magnesium and alloys[J]. 2018, 6(4): 399.
    [5] Wang Xinkai(王忻凯), Xing Li(邢丽), Xu Weiping(徐卫平) et al. Journal of Materials Engineering[J]. 2015(05):12.
    [6] Mao Yuqing, Ke Liming, Huang Chunping, et al. The International Journal of Advanced Manufacturing Technology[J]. 2016, 83(9): 1637.
    [7] Palanivel S, Sidhar H, Mishra R S. Jom[J]. 2015, 67(3): 616.
    [8] Zhao Zijun(赵梓钧), Yang Xinqi(杨新岐), Li Shengli(李胜利) et al. Journal of Materials Engineering[J]. 2019, 47(9): 84-92.
    [9] Phillips B J, Avery D Z, Liu T et al. Materialia[J]. 2019, 7: 100387.
    [10] Griffiths R J, Garcia D, Song J et al. Materialia[J]. 2021, 15: 100967.
    [11] Rivera O G, Allison P G, Jordon J B et al. Materials Science and Engineering: A[J]. 2017, 694: 1.
    [12] Rivera O G, Allison P G, Brewer L N et al. Materials Science and Engineering: A[J]. 2018, 724: 547.
    [13] Garcia D, Hartley W D, Rauch H A et al. Additive Manufacturing[J]. 2020, 34: 101386.
    [14] Gou Guizhi. Ordnance Material Science and Engineering[J]. 2019, 42(2): 5.
    [15] Tongne A, Jahazi M, Feulvarch E et al. Journal of Materials Processing Technology[J]. 2015, 221: 269.
    [16] DebRoy T, Wei H L, Zuback J S et al. Progress in Materials Science[J]. 2018, 92: 112.
    [17] Ngo T D, Kashani A, Imbalzano G et al. Composites Part B: Engineering[J]. 2018, 143: 172.
    [18] Yu H Z, Mishra R S. Materials Research Letters[J]. 2021, 9(2): 71.
    [19] Sun Zhiyong,Liu Fenjun,Chen Haiyan. Rare Metal Materials and Engineering[J]. 2021,50(10):3454.
    [20] Maisonnette D, Suery M, Nelias D et al. Materials Science and Engineering: A[J]. 2011, 528(6): 2718.
    [21] Dorbane A, Ayoub G, Mansoor B, et al. Materials Science and Engineering: A[J]. 2015, 624: 239.
    [22] Tors?ter M, Lefebvre W, Marioara C D et al. Scripta Materialia [J]. 2011, 64(9): 817-820.
    [23] Zhang Ruize, Cong Baoqiang, Qi Bojin et al. Aeronautical Manufacturing Technology[J]. 2019, 62(5): 80.
    [24] Uddin S Z, Murr L E, Terrazas C A et al. Additive Manufacturing[J]. 2018, 22: 405
    [25] Gussev M N, Sridharan N, Thompson Z et al. Scripta Materialia[J]. 2018, 145: 33-36.
    [26] Rutherford B A, Avery D Z, Phillips B J et al. Metals[J]. 2020, 10(7): 947.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

田超博,杨新岐,唐文珅,徐永生.基于摩擦挤压增材制造的单道多层6061铝合金组织特征与力学性能[J].稀有金属材料与工程,2022,51(8):2870~2880.[TIAN Chao-bo, YANG Xin-qi, TANG Wen-shen, XU Yong-sheng. Microstructure features and mechanical properties of single-pass multilayer 6061 aluminium alloy based on friction extrusion additive manufacturing[J]. Rare Metal Materials and Engineering,2022,51(8):2870~2880.]
DOI:10.12442/j. issn.1002-185X.20211057

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-11-30
  • 最后修改日期:2022-01-14
  • 录用日期:2022-02-09
  • 在线发布日期: 2022-09-05
  • 出版日期: 2022-08-29