+高级检索
定向凝固Ag掺杂Mg3Sb2合金热电性能
作者单位:

西安航空学院

基金项目:

国家自然科学基金青年项目(项目号:51904219);陕西省自然科学基金青年项目(项目号:2020JQ-906)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    通过定向凝固方法可以制备高质量的Mg3Sb2晶体,根据凝固理论计算了平界面生长临界速率,在此速率下可以有效抑制第二相Sb的析出。对不同的凝固速率下的Mg3Sb2晶体微观组织进行了分析,表明凝固速率为5ums-1时可以有效减少Mg空位的出现,并在晶体中获得过量Mg原子,有利于更好的提升热电性能。通过消除晶界和Ag元素掺杂有效提升了Mg3Sb2晶体的载流子迁移率和浓度,在测试温度区间(300-800K)内,最大电导率值可达309Scm-1,同时保持了较高的Seebeck系数值,从而获得了更好的电子传输性能(PFmax=1.2mWm-1K-2),通过Hall测试和第一性原理计算对此结果进行了验证。Ag掺杂浓度为2.5at%下相应的热电优值最高可以达到0.67,此方法为Mg3Sb2基热电材料性能优化提供了新的路径,也为制备高性能的Mg3(Sb, Bi)2三元合金提供参考。

    Abstract:

    High quality Mg3Sb2 crystals were successfully prepared by directional solidification method. The critical velocity of planar interface of single-phase Mg3Sb2 crystal was predicted according to the solidification theory, and the precipitated Sb phase can be inhibited below this rate. Microstructure analysis of Mg3Sb2 crystals at different solidification rates indicates that, the quantity of Mg vacanices can be effectively reduced. The excess Mg atoms in the crystals is conducive to the improvement of thermoelectric performance. Carrier mobility and concentration of Mg3Sb2 crystal is tincreased by grain boundry eliminated and Ag doping. On the premise of keeping a high Seebeck coefficient, the maximum electric conductivity is 309Scm-1 at the testing temperature range of 300-800K. As a result, a better electronic transport properties of PF=1.2mWm-1K-2 is obtained. This result is verified by Hall testing and first-principle calculations. Correspondingly, the maximum ZT value is 0.67 at the doping concentration of 25at%. This method developed in this pape provides a new path for the performance optimization of Mg3Sb2-based thermoelectric materials, and also provides a reference for the preparation of high-performance ternary Mg3(Sb, Bi)2 alloy.

    参考文献
    [1] Zhang Jingwen(张静文), Zhang Feipeng(张飞鹏), Yang Xinyu(杨新宇) et al. Rare Metal Materials and Engineering [J], 2019, 48 (2): 644.
    [2] Deng Rigui, Su Xianli, Hao Shiqiang et al. Energy Environmental Science [J], 2018, 11: 1520.
    [3] Wang Hongqiang(王洪强), Li Shuangming(李双明), Chang Xueqing(常雪晴) et al. Rare Metal Materials and Engineering [J], 2017, 46(10): 343.
    [4] Cataldi P, Cataldi P, José A. Advanced Functional Materials [J], 2019, 3(30): 1907301.
    [5] Chang Cheng, Wu Minghui, He Dongsheng et al. Science 2018, 360: 778.
    [6] Shi Xun, Chen Lidong. Nature Materials [J], 2016, 15: 691.
    [7] Li Xiaolong(李晓龙), Zhou Chunsheng(周春生), Yang Chaopu(杨超普) et al. Rare Metal Materials and Engineering [J], 2021, 50(11): 3966.
    [8] Pei Yanling, Liu Yong. Journal of Alloys and Compounds [J], 2012, 514: 40.
    [9] Matthias T, Kazuki I, Shashwat A et al. Materials Today Physics [J], 2018, 6: 83.
    [10] Bhardwaj A, Rajput A, Shukla A et al. RSC Advance [J], 2009, 38(z1):165.
    [11] Chong Xiaoyu, Guan Pinwen, Wang Yu et al. ACS Applied Energy Materials [J] 2018, 1(11): 6600.
    [12] Sankhla A, Kamila H, Kelm K et al. Acta Materials [J], 2020, 199: 85.
    [13] Zhang Jiawei, Song Lirong, Madsen G et al. Nature Communications [J] 2016, 7(1): 10892.
    [14] Zhang Jiawei, Song Lirong, Mamakhel A et al. Chemistry of Materials [J], 2017, 29(12):5371.
    [15] Gorai P, Toberer E, Stevanovi? V et al. Journal of Applied Physics letters [J], 2019, 125(2): 25105.
    [16] Mao Jun, Shuai Jing, Song Shaowei. Proceedings of the National Academy of Sciences [J], 2017, 114(40): 10548.
    [17] Zhu Qing, Song Shaowei, Zhu Hangtian et al. Journal of Power Sources [J], 2019, 414: 393.
    [18] Li Xin, Li Shuangming, Feng Songke et al. Journal of Electronic Materials [J], 2016, 45(6): 2895.
    [19] Li Xin, Li Shuangming, Feng Songke et al. Journal of Alloys and Compounds [J], 2018, 739: 705.
    [20] Zhao Lidong, Tan Guangjian, Hao Shiqiang et al. Science [J], 2016, 351(6269): 141.
    [21] Wang Yangzhong, Zhang Xin, Wang Yang et al. physica status solidi (a) [J], 2019, 216(6): 1800811.
    [22] Liu Wei, Chi Hang, Sun Hui et al. Physical Chemistry and Chemical Physics [J], 2014, 16(15): 6893.
    [23] Song Lirong, Zhang Jiawei, Iversen B et al. Journal of Materials Chemistry A [J], 2017, 5(10): 4932.
    [24] Snyder G, Toberer E. Nature Materials [J], 2008, 7(2):105.
    [25] Liu Weishu, Kim S, Jie Qing et al. Scripta Materialia [J], 2016, 111: 3.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张亚龙,李鑫,谢辉,魏鑫.定向凝固Ag掺杂Mg3Sb2合金热电性能[J].稀有金属材料与工程,2023,52(2):544~550.[Zhang Yalong, li Xin, Xie Hui, Wei Xin. Thermoelectric Properties of Directionally Solidified Ag-doped Mg3Sb2 Alloys[J]. Rare Metal Materials and Engineering,2023,52(2):544~550.]
DOI:10.12442/j. issn.1002-185X.20211149

复制
文章指标
  • 点击次数:458
  • 下载次数: 1215
  • HTML阅读次数: 65
  • 引用次数: 0
历史
  • 收稿日期:2021-12-27
  • 最后修改日期:2022-01-23
  • 录用日期:2022-02-09
  • 在线发布日期: 2023-03-09
  • 出版日期: 2023-02-28