+高级检索
氧化石墨烯对近α型高温钛合金非等温氧化行为的影响机理
作者:
作者单位:

1.中国航发北京航空材料研究院先进钛合金航空科技重点实验室;2.清华大学

基金项目:

国家科技重大专项(J2019-VIII-0003-0165)和国家自然科学基金“叶企孙”科学(U2141222)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    采用热重—差热分析仪对未添加氧化石墨烯(GO)和添加0.5 wt.% GO的近α型高温钛合金(Ti150)进行室温~1500 ℃ 的非等温氧化试验,分析氧化增重规律和氧化产物组织特征,揭示GO对非等温氧化行为的影响机理。结果表明:添加GO的Ti150钛合金的非等温氧化过程包括基本无氧化(≤800 ℃)、氧在α相缓慢溶解(800~1160 ℃)、氧在两相区加速溶解(1160~1300 ℃)、氧在β相快速溶解(1300~1330 ℃)和氧化层剧烈生长(1330~1500 ℃)等五个阶段,氧在β相的溶解和氧化层的生长是非等温氧化增重的主要原因;非等温氧化温度升高至1500 ℃ 时,添加GO的Ti150钛合金的氧化增重和氧化层厚度比未添加GO的合金分别降低10.8%和17.9%;GO提高Ti150钛合金的抗非等温氧化性的主要机理包括两个方面,一是GO提高了合金的β转变温度,推迟了氧在β相中的快速溶解,减少了氧的溶解量;二是GO细化了合金晶粒,增加了晶界数量,使Al和Sn离子更容易向外扩散形成连续致密的富Al2O3层和富Sn层,增强了对氧和金属离子的阻隔作用。

    Abstract:

    The non-isothermal oxidation tests ofthe near-α high-temperature titanium alloys (Ti150) without graphene oxide (GO) and with 0.5 wt.% GO were carried out at room temperature ~1500 ℃ by thermogravimetry-differential scanning calorimetry method. The influence mechanism of GO on non-isothermal oxidation behavior was revealed by analyzing the oxidation mass gain laws and the microstructure characteristics of oxidation products. The results showed that the non-isothermal oxidation process of Ti150 alloy with GO included almost no oxidation (≤800 ℃), slow dissolution of oxygen in α phase (800~1160 ℃), accelerated dissolution of oxygen in two-phase region (1160~1300 ℃), rapid dissolution of oxygen in β phase (1300~1330 ℃), and violent growth of oxide scale (1330~1500 ℃) five stages. The dissolution of oxygen in β phase and growth of oxide scale were the main reasons for the non-isothermal oxidation mass gain. After non-isothermal oxidation to 1500 ℃, the non-isothermal oxidation mass gain and oxide scale thickness of Ti150 alloy with GO were 10.8% and 17.9% lower than those without GO, respectively. The main mechanism of GO improving the non-isothermal oxidation resistance was that the beginning temperature of rapid dissolution of oxygen in β-Ti was delayed due to the higher β-transus temperature of Ti150 alloy with GO, which resulted in the decrease of oxygen solution, and the finer grain made the Al2O3-rich oxide layer and the Sn-rich layer more continuous and dense, which were more effective barriers to ion diffusion.

    参考文献
    [1]CaiJianming(蔡建明),MiGuangbao(弭光宝),Gao Fan(高帆) et al.Journal of Materials Engineering(材料工程)[J],2016,44(8):1-10.
    [2]WangQingjiang(王清江),Liu jianrong(刘建荣),Yang Rui(杨锐) et al.Journal of Aeronautical Materials(航空材料学报)[J], 2014, 34(4): 1-26.
    [3]WanjaraP,JahaziM,Monajati H et al.Materials Science and Engineering: A[J],2005,396:50-60.
    [4]PiaoRongxun(朴荣勋),Yang Shaoli(杨绍利),Zhu Yuling(朱钰玲) et al.Rare Metal Materials and Engineering(稀有金属材料与工程) [J],2020,49(10):3314-3324.
    [5]Zhang XM,Zhao Y Q,Zeng W D. International Journal of Hydrogen Energy[J],2010,35: 4354-4360.
    [6]Jiang B,WenD,Wang Q. Journal of Materials Science Technology[J],2019,35:1008-1016.
    [7]PerrozziF,PreziosoS,Ottaviano L. Journal of Physics: Condensed Matter[J],2015,27:013002.
    [8]Cao C,DalyM,Singh C Vet al. Carbon[J],2015,81:497-504.
    [9]Wei L,LiuX,Gao Y et al.Materials and Design[J],2021,197:109261.
    [10]NiuB,ZhaoK,ZhangF et al.Science of Advanced Materials[J],2017,9:1126-1130.
    [11]Liu J,HuN,Liu Xet al. Nanoscale Research Letters[J],2019,14:144.
    [12]Dong L L,Lu J W,Fu Y Qet al.Carbon[J],2020,164:272-286.
    [13]Chen Hang(陈航),MiGuangbao(弭光宝),Li Peijie(李培杰) et al.Journal of Materials Engineering(材料工程)[J],2019,47(9):38-45.
    [14]Chen H,Mi G B,Li P J et al. Materials[J],2020,13:3358.
    [15]MiGuangbao(弭光宝),Ouyang Peixuan(欧阳佩旋), Chen Hang(陈航) et al.Aeronautical Manufacturing Technology(航空制造技术)[J],2019,62(15):88-92.
    [16]Mi G B,Huang X S,Li P J et al. Transactions of Nonferrous Metals Society of China[J],2012,22:2409-2415.
    [17]MiGuangbao(弭光宝),Cao Chunxiao(曹春晓),Huang Xu(黄旭) et al.Journal of Materials Engineering(材料工程)[J],2016, 44(1):1–10.
    [18]ChenH,Mi G B,Li P Jet al. Materials Science Forum[J],2019,944:110–119.
    [19]Ouyang P X,Mi G B,Li P Jet al. Materials[J],2018,11:2141.
    [20]Maharanaa H S,JenaS,Basu A et al. Surface Coatings Technology[J],2018,345:140-151.
    [21]Nieto A,KumarA,Lahiri D et al. Carbon[J],2014,67:398-408.
    [22]Tomonori K,Yoko Y. Metallurgical and Materials Transactions A[J],2015,46A:2758-2767.
    [23]BarinI,Platzki G. Thermochemical Data of Pure Substances[M]. Third Edition. Weinheim: VCH VerlagsgesellschaftmbH, 1995.
    [24]CuiWenfang(崔文芳),Wei Hairong(魏海荣),Luo Guozhen(罗国珍) et al.Rare Metal Materials and Engineering(稀有金属材料与工程)[J],1997,26(2):31-35.
    [25]JiaWeijü(贾蔚菊),Zeng Weidong(曾卫东),Liu Jianrong(刘建荣) et al.Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2010,39(5):781-786.
    [26]Mcreynolds K S,Tamirisakandala S. Metallurgical Materials Transactions A[J],2011,42(7):1732-1736.
    [27]Liu Z ,Welsch G. Metallurgical and Materials Transactions A[J],1991,22:946-948.
    [28]Crosa C J. Metallurgical and Materials Transactions B[J],1970,1:2517-2522.
    [29]Pitt F,Ramulu M. Journal of Materials Engineering Performance[J],2004,13(6):727-734.
    [30]Xiao Gang(肖刚),Huang Baiyun(黄伯云),Qu Xuanhui(曲选辉) et al.Rare Metal Materials and Engineering(稀有金属材料与工程)[J],1997,26(2):50-53.
    [31]Chen H,Mi G B,Li P Jet al.Materials Letters[J],2021,291:129575.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈航,弭光宝,李培杰,黄旭,曹春晓.氧化石墨烯对近α型高温钛合金非等温氧化行为的影响机理[J].稀有金属材料与工程,2022,51(8):2899~2906.[Chen Hang, Mi Guangbao, Li Peijie, Huang Xu, Cao Chunxiao. Influence mechanism of graphene oxide on non-oxidation behavior of near-αhigh-temperature titanium alloy[J]. Rare Metal Materials and Engineering,2022,51(8):2899~2906.]
DOI:10.12442/j. issn.1002-185X.20220002

复制
文章指标
  • 点击次数:498
  • 下载次数: 1234
  • HTML阅读次数: 110
  • 引用次数: 0
历史
  • 收稿日期:2022-01-03
  • 最后修改日期:2022-01-30
  • 录用日期:2022-03-07
  • 在线发布日期: 2022-09-05
  • 出版日期: 2022-08-29