+高级检索
固体氧化物燃料电池La0.6Sr0.4Co0.2Fe0.8-xScxO3-?阴极材料的晶体结构与电化学性能
作者:
作者单位:

1.内蒙古科技大学材料与冶金学院;2.内蒙古包头市昆都仑区阿尔丁大街7号

中图分类号:

TM911.4 ??????????????

基金项目:

国家自然科学基金项目(51974167);内蒙古自治区高等学校创新团队发展计划支持(No.NMGIRT2215)


Crystal structure and electrochemical performance of La0.6Sr0.4Co0.2Fe0.8-xScxO3-? cathode materials for solid oxide fuel cell
Fund Project:

国家自然科学基金项目(51974167);内蒙古自治区高等学校创新团队发展计划支持(No.NMGIRT2215)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    采用溶胶-凝胶法合成了Sc掺杂La0.6Sr0.4Co0.2Fe0.8-xScxO3-?(LSCFScx, x=0, 0.04, 0.08)阴极粉体,系统分析了LSCFSc阴极材料的晶体结构、表面元素化学形态、催化活性及电化学性能。XRD结果表明,LSCF为立方结构,Sc3+掺杂后LSCFSc阴极材料由立方相向六方结构转变。LSCFSc阴极材料的电导率随着Sc3+的掺杂而降低,在300-800 ℃温度范围内LSCFSc0.08阴极样品的电导率仍大于100 S/cm。XPS结果表明Sc3+掺杂提高了LSCFSc阴极材料表面吸附氧(OAds)的含量,LSCFSc0.08阴极材料在800℃测得的极化面电阻RASR为0.026 Ω·cm2,相比LSCF阴极材料RASR降低了约87.6%,显著改善了LSCFSc阴极材料对氧气的吸附/解离能力,提升了对氧气的催化活性。以Ni-SDC为阳极材料,SDC为电解质,LSCFSc0.08为阴极材料组装成Ni-SDC|SDC|LSCFSc0.08阳极支撑型单电池,在800℃时最大功率密度为806mW/cm2,表明Sc3+掺杂可以显著提升阴极材料的电化学性能。

    Abstract:

    The Sc-doped La0.6Sr0.4Co0.2Fe0.8-XScxO3-? (LSCFScx, x=0, 0.04, 0.08) cathode powders were synthesized by a sol-gel method. The crystal structure, chemical morphology of surface elements, catalytic activity and electrochemical properties of LSCFSc cathode material were systematically analyzed.XRD results show that LSCF has a cubic structure, and the LSCFSc cathode material changes from cubic to hexagonal structure.The conductivity of LSCFSc cathode material decreases with the Sc3+-doping, and the conductivity of LSCFSc0.08 cathode sample is still greater than 100 S/cm in the temperature range of 300-800.XPS results show that Sc3+-doping increases the content of adsorbed oxygen (OAds) on the surface of LSCFSc cathode material, and the RASR of polarization surface of LSCFSc0.08 cathode material measured at 800℃ is 0.026 Ω·cm2, which is about 87.6% lower than RASR of LSCF cathode material, which significantly improved the adsorption/dissociation ability of LSCFSc cathode material to oxygen, and enhanced the catalytic activity of oxygen.Ni-SDC as the anode material, SDC as electrolyte, and LSCFSc0.08 as cathode material assembled into Ni-SDC|SDC|LSCFSc0.08 anode-support single cell, the maximum power density is 806 mW/cm2 at 800 ℃, indicating that Sc3+-doping can significantly improved the electrochemical performance of cathode materials.

    参考文献
    [1] Yang G, Su C, Shi H, et al. Towards Reducing Operation Temperature of Solid Oxide Fuel Cells: Our Past Fifteen Years of Efforts in Cathode Development. Energy & Fuels[J], 2020, 34(12): 15169-15194.
    [2] Raza R, Zhu B, Rafique A, et al. Functional ceria-based nanocomposites for advanced low-temperature (300–600 °C) solid oxide fuel cell: A comprehensive review. Materials Today Energy[J], 2020, 15:100373.
    [3] Shen R, Nie J, Wang K, et al. Applying multifunctional perovskite LaNiO3 as electrolyte and anode for low‐temperature solid oxide fuel cell. Journal of Materials Science: Materials in Electronics[J], 2021(1):1-9.
    [4]R Amin, K Karan. Characterization of La0.5Ba0.5CoO3-δ as a SOFC Cathode Material. Journal of The Electrochemical Society[J], 2010, 157(2): B285–B291.
    [5] Gong W, Gopalan S, Pal U B. Materials system for intermediate-temperature (600-800°C) SOFCs based on doped Lanthanum-Gallate electrolyte. Journal of The Electrochemical Society[J], 2005, 152(9): A1890-A1895.
    [6] Hwang H J, Moon J W, Lee S. Electrochemical performance of LSCF-based composite cathodes for intermediate temperature SOFCs. Journal of Power Sources[J], 2005, 145(2):243-248.
    [7] Lee J W, Liu Z, Lei Y, et al. Preparation of dense and uniform La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) films for fundamental studies of SOFC cathodes. Journal of Power Sources[J], 2009, 190(2):307-310.
    [8] Vargas R A, Bonturim E, Andreoli M, et al. Characterization of LSCF-based composite and LSCF as cathodes for intermediate temperature SOFCs. Materials Science Forum[J], 2012: 657-662.
    [9] Liu Y, Zhou F, Chen X, et al. Enhanced electrochemical activity and stability of LSCF cathodes by Mo doping for intermediate temperature solid oxide fuel cells. Journal of Applied Electrochemistry[J], 2021, 51:425-433.
    [10] Ghamarinia M, Babaei A, Zamani C. Electrochemical characterization of La2NiO4-infiltrated La0.6Sr0.4Co0.2Fe0.8O3-δ by analysis of distribution of relaxation times. Electrochimica Acta[J], 2020, 353.
    [11] Cai C K, Xie M Y, Liu Y Y, Xue K, Li S T, An S L. Effect of surface modification on electrochemical performance of La0.6Sr0.4Co0.2Fe0.8O3-σ cathode material. JOURNAL OF THE CHINESE CERAMIC SOCIETY[J], 2021, 49(01):49-55.
    [12] Zhang C, Yao Z, Ye L, et al. A comparative study of La0.8Sr0.2MnO3-? and La0.8Sr0.2Sc0.1Mn0.9O3-? as cathode materials of single-chamber SOFCs operating on a methane-air mixture. Journal of Power Sources[J], 2009, 191(2): 225-232.
    [13] Zeng P, Ran R, Chen Z, et al. Efficient stabilization of cubic perovskite SrCoO3-δ by B-site low concentration scandium doping combined with sol-gel synthesis. Journal of Alloys & Compounds[J], 2008, 455(1-2): 465-470.
    [14] Natile M M, F Poletto, Galenda A, et al. La0.6Sr0.4Co1?yFeyO3?δ Perovskites: Influence of the Co/Fe Atomic Ratio on Properties and Catalytic Activity toward Alcohol Steam-Reforming. Chemistry of Materials[J], 2008, 20(6):17-26.
    [15] Galenda A, Natile M M, Krishnan V, et al. LaSrCoFeO and Fe2O3/LaSrCoFeO powders: Synthesis and Characterization. Chemistry of Materials[J], 2007, 19(11):2796-2808.
    [16] Cai, C., Xie, M., Xue, K. et al. Enhanced electrochemical performance of La0.6Sr0.4Co0.2Fe0.8O3?δ cathode via Ba-doping for intermediate-temperature solid oxide fuel cells. Nano Research[J]. (2021). https://doi.org/10.1007/s12274-021-3972-0
    [17] Heide P. Systematic x-ray photoelectron spectroscopic study of La1-xSrx-based perovskite-type oxides. Surface & Interface Analysis[J], 2002, 33(5):414–425.
    [18] Zhang K, Lei G, Ran R, et al. Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5 ? as materials of oxygen permeation membranes and cathodes of SOFCs. Acta Materialia[J], 2008, 56(17):4876-4889.
    [19] Zeng P, Ran R, Chen Z, et al. Efficient stabilization of cubic perovskite SrCoO3-δ by B-site low concentration scandium doping combined with sol-gel synthesis. Journal of Alloys & Compounds[J], 2008, 455(1-2):465-470.
    [20] Adler S B. Limitations of charge-transfer models for mixed-conducting oxygen electrodes. Solid State Ionics[J], 2000, 135(1-4):603-612.
    [21] Baek S W, Bae J, Yoo Y S. Cathode reaction mechanism of porous-structured Sm0.5Sr0.5CoO3?δ and Sm0.5Sr0.5CoO3?δ/Sm0.2Ce0.8O1.9 for solid oxide fuel cells. Journal of Power Sources[J], 2009, 193(2): 431-440.
    [22]Xie Manyi, Cai Changkun, An Shengli et al. Preparation and electrochemical performance improvement of alkaline earth metal Ca Doped LNF Cathode. Rare Metal Materials and Engineering [J], 2020, 49(9):8.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

蔡长焜,谢满意,王林,薛柯,彭军,包金小,安胜利.固体氧化物燃料电池La0.6Sr0.4Co0.2Fe0.8-xScxO3-?阴极材料的晶体结构与电化学性能[J].稀有金属材料与工程,2023,52(2):601~608.[caichangkun, xiemanyi, wanglin, xueke, pengjun, baojinxiao, anshengli. Crystal structure and electrochemical performance of La0.6Sr0.4Co0.2Fe0.8-xScxO3-? cathode materials for solid oxide fuel cell[J]. Rare Metal Materials and Engineering,2023,52(2):601~608.]
DOI:10.12442/j. issn.1002-185X.20220008

复制
文章指标
  • 点击次数:807
  • 下载次数: 1231
  • HTML阅读次数: 101
  • 引用次数: 0
历史
  • 收稿日期:2022-01-05
  • 最后修改日期:2022-03-06
  • 录用日期:2022-03-28
  • 在线发布日期: 2023-03-09
  • 出版日期: 2023-02-28