+高级检索
基于人工神经网络与遗传算法的Al-Mg-Si系合金抗拉强度预测模型
作者:
作者单位:

1.北京科技大学工程技术研究院;2.蔚来汽车(安徽)有限公司

作者简介:

通讯作者:

中图分类号:

TG146.21

基金项目:

中央高校基本科研业务费(FRF-TP-19-083A1)


Prediction model of tensile strength of Al-Mg-Si alloy based on artificial neural network and genetic algorithm
Author:
Affiliation:

1.Institute of Engineering Technology, USTB;2.NIO Automobile (Anhui) Co., Ltd

Fund Project:

Fundamental Research Funds for the Central Universities(FRF-TP-19-083A1)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了研究Al-Mg-Si系合金热处理制度和合金成分对力学性能的影响规律,本文采用人工神经网络(Artificial neural network, ANN)和遗传算法(Genetic algorithm, GA)相结合的方法,构建了Al-Mg-Si系合金强度预测模型(ANN-GA模型)。通过单因素和双因素分析,研究了合金元素含量和热处理工艺参数对铝合金强度的影响规律。结果表明,随着Si含量的增加,铝合金的抗拉强度呈现先降低后升高的趋势;随着Mg含量的增加、Cu含量的增加或者Fe含量的减少,铝合金的抗拉强度整体上呈现升高的趋势。双因素分析更能反映输入参数对铝合金抗拉强度的影响。Mg/Si比、Mg+Si总量和时效时间对Al-Mg-Si系合金力学性能的影响显著。铝合金的硬度随时间的变化趋势与ANN-GA模型的计算结果一致,峰值时效时间为29h,相对误差为11.86%。

    Abstract:

    In order to study the effect of heat treatment system and alloy composition on the mechanical properties of Al-Mg-Si alloys, the strength prediction model (ANN-GA model) of Al-Mg-Si alloys was constructed by using the combination of artificial neural network (ANN) and genetic algorithm (GA). The effects of alloying element content and heat treatment process parameters on the strength of aluminum alloy were studied by single factor and double factor analysis. The results show that the tensile strength of aluminum alloy decreases first and then increases with the increase of Si content; With the increase of Mg content, the increase of Cu content or the decrease of Fe content, the tensile strength of aluminum alloy increases as a whole. Two factor analysis can better reflect the influence of input parameters on the tensile strength of aluminum alloy. Mg/Si ratio, total amount of Mg+Si and aging time have significant effects on the mechanical properties of Al-Mg-Si alloys. The variation trend of hardness of aluminum alloy with time was consistent with the calculation results of ANN-GA model. The peak aging time was 29h and the relative error was 11.86%.

    参考文献
    相似文献
    引证文献
引用本文

李灵鑫,江海涛,武晓燕,李军,田世伟.基于人工神经网络与遗传算法的Al-Mg-Si系合金抗拉强度预测模型[J].稀有金属材料与工程,2023,52(3):929~936.[Li Lingxin, Jiang Haitao, Wu Xiaoyan, Li Jun, Tian Shiwei. Prediction model of tensile strength of Al-Mg-Si alloy based on artificial neural network and genetic algorithm[J]. Rare Metal Materials and Engineering,2023,52(3):929~936.]
DOI:10.12442/j. issn.1002-185X.20220133

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-02-23
  • 最后修改日期:2022-06-06
  • 录用日期:2022-07-12
  • 在线发布日期: 2023-04-07
  • 出版日期: 2023-03-24