+高级检索
Ti6321钛合金动态断裂行为研究
作者单位:

北京理工大学

中图分类号:

TG146.23

基金项目:

爆炸科学与技术国家重点实验室基金(YBKT17-06)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    对Ti6321钛合金进行动态三点弯曲加载,使其发生I型(张开型)断裂并获得波形曲线,结合实验-数值法获得了三种组织Ti6321钛合金的I型裂纹动态断裂性能。利用扫描电镜、激光共聚焦显微镜对三种组织Ti6321钛合金的断口进行观察分析。结果表明,魏氏组织具有最高的I型裂纹动态断裂性能,双态组织次之,等轴组织的动态断裂性能最低。对于I型裂纹断口,等轴组织与双态组织主要为韧性断裂机制,而魏氏组织呈现出部分解理断裂的特征。魏氏组织断口的起伏最大,比表面积最大,裂纹扩展需要消耗更多能量,因此断裂性能较好。

    Abstract:

    The dynamic three-point bending loading was carried out on Ti6321 titanium alloy to cause mode I (open type) fracture and obtain the waveform curve. Combined with the experimental & numerical method, the mode I crack dynamic fracture properties of Ti6321 titanium alloy with three structures were obtained. The fracture surfaces of three kinds of Ti6321 titanium alloys were observed and analyzed by scanning electron microscope (SEM) and confocal laser scanning microscope (CLSM). The results show that the widmanstatten structure has the highest dynamic fracture performance of mode I crack, followed by the bimodal structure, and the equiaxed structure has the lowest dynamic fracture performance. For mode I crack fracture, equiaxed structure and bimodal structure are mainly ductile fracture mechanism, while widmanstatten structure has the characteristics of partial cleavage fracture. The Widmanstatten structure has the best fracture performance. Because of the largest fluctuation of fracture and the largest specific surface area, the crack propagation needs more energy.

    参考文献
    [1] Zhao Yongqing(赵永庆). Progress in Chinese Materials(中国材料进展) [J],2010,29(5):1
    [2] Yu Yu(于宇),Li Jiaqi(李嘉琪). Materials Development and Application(材料开发与应用) [J],2018,33(3):111
    [3] Xiong Jinhui, Li Shikai, Gao Fuyang et al. Materials Science and Engineering:A[J],2015,640:419
    [4] Xu Xuefeng(徐雪峰),Wang Lin(王琳),Cheng Xingwang(程兴旺) et al. Acta Armamentarii (兵工学报)[J],2020,41(07):1401
    [5] Rajesh S Kumar. Engineering Fracture Mechanics[J],2021,248: 107699
    [6] Coules H E. International Journal of Pressure Vessels and Piping [J],2018,162:98
    [7] Fu Yanyan(付艳艳),Song Yueqing(宋月清),Hui Songxiao(惠松骁) et al. Rare Metal Materials and Engineering(稀有金属材料与工程) [J],2009,33(01):92
    [8] Liu Yang, Lim Samuel C V, Ding Chen et al. Journal of Materials Science & Technology[J],2022,97: 101
    [9] Buirette Christophe, Huez Julitte, Gey Nathalie et al. Materials Science and Engineering: A [J],2014,618:546
    [10] Shi Xiaohui,Zeng Weidong,Zhao Qinyang. Materials Science and Engineering: A[J],2015,636: 543
    [11] Shi Xiaohui, Zeng Weidong, Shi Chunling et al. Journal of Alloys and Compounds[J],2015,632, 748
    [12] Ren Junqiang, Wang Qi, Zhang Binbin et al. Intermetallics[J], 2021,130:107058
    [13] Wang Q, Ren J Q, Wu Y K et al. Journal of Alloys and Compounds[J],2019,789:249
    [14] Zhou Dadi,Zeng Weidong,Xu Jianwei et al. Materials Characterization[J],2019,151: 103
    [15] Yang Yingli(杨英丽), Su Hangbiao(苏航标), Guo Dizi(郭荻子) et al. Journal of Chinese Nonferrous Metals(中国有色金属学报) [J],2010,20 (1): 1002
    [16] Ning Zixuan(宁子轩),Wang Lin(王琳),Cheng Xingwang(程兴旺) et al. Acta Armamentarii(兵工学报)[J],2021,42(04):862
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李严星,周哲,王琳,程焕武,程兴旺. Ti6321钛合金动态断裂行为研究[J].稀有金属材料与工程,2023,52(3):953~958.[Li Yanxing, Zhou Zhe, Wang Lin, Cheng Huanwu, Cheng Xingwang. Research on dynamic fracture behavior of Ti6321 Titanium Alloy[J]. Rare Metal Materials and Engineering,2023,52(3):953~958.]
DOI:10.12442/j. issn.1002-185X.20220182

复制
文章指标
  • 点击次数:769
  • 下载次数: 1058
  • HTML阅读次数: 57
  • 引用次数: 0
历史
  • 收稿日期:2022-03-08
  • 最后修改日期:2022-03-29
  • 录用日期:2022-04-26
  • 在线发布日期: 2023-04-07
  • 出版日期: 2023-03-24