+高级检索
钨丝增强铜锌复合材料侵彻过程的数值模拟
作者:
作者单位:

1.内蒙古科技大学材料与冶金学院;2.内蒙古科技大学理学院

中图分类号:

TB331

基金项目:

内蒙古自然科学基金(2020BS05006);内蒙古科技大学创新(2019QDL-B09)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    基于Johnson-Cook模型和Gruneisen状态方程建立有限元分析模型,使用LS-DYNA软件对钨丝增强铜锌复合材料和钨镍铁合金侵彻钢靶过程开展数值模拟研究,分析两种材料在侵彻过程中各个阶段的变形,探讨钨丝本身的各向异性对侵彻性能的影响。结果表明,钨丝增强铜锌复合材料表现出明显的自锐化现象,与实验结果相符。复合材料在侵彻过程中应力主要集中在轴向的钨丝上,应力值达到2.5GPa,铜锌合金受力不足0.47GPa。该弹芯材料侵彻时的变形方式为:与靶板接触的钨丝发生弯曲,弯曲后的钨丝受力方向与轴向呈一定角度,强度和塑性明显降低。在剪切应力作用下,使材料变形区域发生破坏脱落,形成了尖锐的头部,从而表现出自锐化特征。

    Abstract:

    Based on the Johnson-Cook model and Gruneisen equation of state, a finite element analysis model was established, and the LS-DYNA software was used to carry out numerical simulation research on the penetration process of tungsten wire reinforced copper-zinc composite materials and tungsten-nickel-iron alloys into steel targets. The deformation of each stage in the tungsten wire is discussed, and the influence of the anisotropy of the tungsten wire on the penetration performance is discussed. The results show that the tungsten wire reinforced copper-zinc composite exhibits obvious self-sharpening phenomenon, which is consistent with the experimental results. During the penetration process, the stress is mainly concentrated on the axial tungsten wire, the stress value reaches 2.5GPa, and the stress of the brass is less than 0.47GPa. The deformation mode is as follows: tungsten wire bends after contracting the target plate. the forced direction of the tungsten wire has changed to a certain angle with the axial direction. The strength and plasticity of the composite are significantly reduced at this direction. With the destroy of deformation areas, a sharp head of the composite penetrator is formed, which shows the characteristics of self-sharpening.

    参考文献
    [1] Conner R D, Dandliker R B, Johnson W L. Acta materialia [J],1998, 46(17): 6089-6102.
    [2] ZHANG Yunfeng(张云峰),LUO Xingbai(罗兴柏). Journal of Ordnance Equipment Engineering(兵器装备工程学报)[J],2021,42(06):133-139.
    [3] ZHANGSYuling(张玉令),SSHISDongmei(施冬梅),SZHANGSYunfeng(张云峰) et al. Explosion and Shock Waves (爆炸与冲击)[J],2021,41(05):58-66.
    [4] WANG Jie(王杰),CHEN Xiao-wei(陈小伟),WEI Li-ming(韦利明) et al. JournalSofSExperimentalSMechanics(实验力学 )[J],2014,29(03):279-285.
    [5] Du Zhonghua(杜忠华), Du Chengxin(杜成鑫), Zhu Zhengwang( 朱正旺 ) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2016, 45(5): 1308
    [6] Du Zhonghua(杜忠华), Du Chengxin(杜成鑫), Zhu Zhengwang(朱正旺) et al. Rare Metal Materials and Engineering (稀有金属材料与工程)[J],2016, 45(9): 2359
    [7] Du Chengxin(杜成鑫), Du Zhonghua(杜忠华), Zhu Zhengwang(朱正旺). Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2017,46(06):1632-1637.
    [8] Guo W, Jiang H, Wang S et al. Journal of Alloys and Compounds [J], 2019, 794: 396-401.
    [9] ZOU Minming(邹敏明), GUO Mi(郭珉), CHAI Dongsheng(柴东升) et al. Ordnance Material Science and Engineering(兵器材料科学与工程[J],2021,44(04):56-60.
    [10] Li J C, Chen X W, Huang F L. International Journal of Impact Engineering [J]., 2015, 86: 67-83.
    [11] Hu Z, Liu J, Li S et al. Materials Science and Engineering: A [J], 2017, 708: 43-49.
    [12] Hafizoglu H, Durlu N, Konokman H E. International Journal of Refractory Metals and Hard Materials [J], 2019, 81: 155-166.
    [13] Johnson G R, Cook W H. Engineering fracture mechanics [J], 1985, 21(1): 31-48.
    [14] Du Chengxin(杜成鑫). Thesis for Doctorate(博士论文) [D]. Nanjing :Nanjing University of Science Technology,2020.
    [15] Li Jicheng(李继承). Thesis for Doctorate(博士论文) [D]. Beijing: Beijing Institute of Technology,2016.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

姜涛,呼陟宇,高雪云,王海燕,孙文彬.钨丝增强铜锌复合材料侵彻过程的数值模拟[J].稀有金属材料与工程,2023,52(4):1296~1302.[Jiang tao, Hu zhiyu, Gao xueyun, Wang haiyan, Sun wenbin. Numerical simulation of penetration process of tungsten wire reinforced copper-zinc composites[J]. Rare Metal Materials and Engineering,2023,52(4):1296~1302.]
DOI:10.12442/j. issn.1002-185X.20220215

复制
文章指标
  • 点击次数:509
  • 下载次数: 1141
  • HTML阅读次数: 79
  • 引用次数: 0
历史
  • 收稿日期:2022-03-18
  • 最后修改日期:2022-04-14
  • 录用日期:2022-04-26
  • 在线发布日期: 2023-05-01
  • 出版日期: 2023-04-25