+高级检索
退火对液氮轧制CrCoNi中熵合金组织与性能的影响
作者:
作者单位:

昆明理工大学材料科学与工程学院

中图分类号:

TG337

基金项目:

云南省科技厅面向基金(项目号908075156031),钒钛资源综合利用四川省重点实验室项目(2021FTSZ13),攀枝花学院校级项目(2021YB009)。通信作者易健宏(1965—),男,湖南长沙人,博士,教授,主要从事稀贵金属材料加工与制备研究,E-mail:yijianhong@kmust.edu.cn


Effect of annealing on microstructure and properties of medium entropy alloy CrCoNi after liquid nitrogen temperature rolling
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对 CrCoNi中熵合金具有优异的液氮性能,但其液氮轧制后塑性较差(<8%)所带来的难加工问题,本文以电弧熔炼铸态CrCoNi中熵合金为研究对象,在液氮(77K)下对CrCoNi合金进行了3道次轧制变形,总变形量为50 %。随后,采用650 ℃、700 ℃、800 ℃三种温度,保温时间为30 min下进行退火。实验数据表明:CrCoNi中熵合金经过轧制及退火后,未发生物相结构改变,退火后,变形晶粒发生再结晶细化,并产生∑3退火孪晶,随退火温度升高,再结晶程度增加,延伸率提高,通过液氮轧制与中温短时间退火进行性能调控,可获得强度与韧性匹配的性能,并提高了热处理工艺效率。

    Abstract:

    The medium entropy alloy of CrCoNi has excellent low temperature properties, but its plasticity is poor (<8%) after liquid nitrogen temperature rolling. In this research, arc melting of casted CrCoNi entropy alloy as the research sample, rolling deformation of CrCoNi alloy at low temperature (77K) for three passes, the total deformation was 50%. Then, annealing was carried out at 650 ℃, 700 ℃ and 800 ℃ for 30 minutes. Experimental data show that: CrCoNi medium entropy alloy after rolling and annealing, not material phase structure changed, after annealing. Because of recrystallization, deformation grains become smaller, and generated ∑3 annealing twin in organization. As the annealing temperature increased, the number of recrystallized grains increased, the elongation increased. It can be concluded that through the cold rolling and medium temperature annealing in short time performance controlling, matching the performance of the strength and toughness can be obtained, The efficiency of heat treatment process was improved.

    参考文献
    [1] YEH J W. Alloy Design Strategies and Future Trends in High-Entropy Alloys[J]. Jom, 2013, 65(12): 1759-1771.
    [2] BERND G, ANTON H, KELI V S T, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures[J]. Nature Communications, 2016, 17(5): 10-60.
    [3] MIAO J, SLONE C. E, SMITH T M, et al. The evolution of the deformation substructure in a Ni-Co-Cr equiatomic solid solution alloy[J]. Acta Materialia, 2017, 132(15): 35-48.
    [4] YUAN S Q, GAN B, QIAN L, et al. Gradient nanotwinne d CrCoNi me dium-entropy alloy with strength-ductility synergy [J] . Scripta Materialia, 2021, (203): 114117
    [5] MELNICK A B, SOOLSHENKO V K. Thermodynamic design of high-entropy refractory alloys[J]. Journal of Alloys Compounds, 2017, 694(89): 223-227.
    [6] LAPLANCHE G, KOSTKA A, REINHART C, et al. Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi[J]. Acta Materialia, 2017, 128(36): 292-303.2018, 54(11): 1553-1566.
    [7] ZHAO Y L, YANG T, TONG Y, et al. Heterogeneous Precipitation Behavior and Stacking fault-media-ted Deformation in a CoCrNi-based Medium-entropy Alloy[J]. Acta Materialia, 2017, 138(13): 77-78.
    [8] TSAI M H. Physical properties of high entropy alloys[J].Entropy,2013,15:5338-5345.
    [9] Wang Z J, HUANG Y H, YANG Y, et al. Atomic-size effect and solid solubility of multicomponent alloys[J]. Scr Mater, 2015, 94(9): 28-29.
    [10] GLUDOVATZ B, HOHENWARTER A, CATOOR D, et al. A fracture-resistant high-entropy alloy for cryogenic applications[J]. Science, 2014, 345(15): 1153-1154.
    [11] GRANBERG F, NORDLUND K, ULLAH M W, et al. Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys[J]. Phys Rev Lett, 2016, 116(9): 1355-1361.
    [12] ZHANG Y,ZUO T T,TANG Z,et al.Microstructures and properties of high-entropy alloys[J].Progress in Materials Science,2014,61:1-93.
    [13] LV Z P, LEI Z F, HUANG H L,et al. Deformation Behavior and Toughening of High-Entropy Alloys[J]. ACTA METALLURGICA SINICA, 2018, 54(11): 1553-1566.(吕昭平, 雷智锋, 黄海龙, 等. 高熵合金的变形行为及强韧化[J]. 金属学报, 2018, 54(4): 1553-1556.)
    [14] WU Z, BEI H, OTTO F, et al. Recovery,recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys[J]. Intermetallics, 2014, 46(6): 131-140.
    [15] TSAIA M H,YEH J W. High-entropy alloys:a critical review[J]. Materials Research Letters,2014,2(3):107-123.
    [16] SLONE C E,MIAO J, GEORGE E P, et al. Achieving ultra-high strength and ductility in equiatomic CrCoNi with partially recrystallized microstructures [J]. Acta Materialia, 2019, 165: 496-507.
    [17] WU Z,BEI H,PHARR G M,et al. Temperature dependence of the mechanical properties of equiatomic solidsolution alloys with face-centered cubic crystal structures[J]. Acta Materialia,2014,81:428-441.
    [18] SONG L Y, WANG Y F, WANG M S, et al. Microstructure and mechanical behavior of CrCoNi medium entropy alloys in 1000 MPa grade [J]. JOURNAL OF AERONAUTICAL MATERIALS,2020, 40(4): 62-70.(宋凌云, 王艳飞, 王明赛,等. 1000 MPa 级CrCoNi 中熵合金的微观组织和力学行为[J]. 航空材料学报, 2020, 40(4): 62-70.)
    [19] PRAVEEN S, PEUMAN A R, JAE W B, et al. Fine tuning of tensile properties in CrCoNi medium entropy alloy through cold rolling and annealing [J]. Intermetallics, 2019, 113: 106578.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈今良,冯中学,易健宏.退火对液氮轧制CrCoNi中熵合金组织与性能的影响[J].稀有金属材料与工程,2023,52(6):2182~2188.[chenjinliang, feng zhongxue, Yi jianhong. Effect of annealing on microstructure and properties of medium entropy alloy CrCoNi after liquid nitrogen temperature rolling[J]. Rare Metal Materials and Engineering,2023,52(6):2182~2188.]
DOI:10.12442/j. issn.1002-185X.20220473

复制
文章指标
  • 点击次数:492
  • 下载次数: 1113
  • HTML阅读次数: 43
  • 引用次数: 0
历史
  • 收稿日期:2022-05-30
  • 最后修改日期:2022-06-17
  • 录用日期:2022-07-12
  • 在线发布日期: 2023-07-07
  • 出版日期: 2023-06-30