+高级检索
W-4Re-0.27HfC合金的1500~1700℃拉伸蠕变性能及损伤机理
作者:
作者单位:

1.西北工业大学 材料学院 NPU-SAS联合中心;2.安泰天龙钨钼科技有限公司;3.谢菲尔德大学 材料科学与工程学院,英国 谢菲尔德 S QF

基金项目:

国家自然科学基金资助(项目号12102336,U2241239)


Tensile creep properties and damage mechanisms of W-4Re-0.27HfC alloy at 1500~1700 ℃
Author:
Affiliation:

1.NPU-SAS Joint Research Center,School of Materials Science and Engineering,Northwestern Polytechnical University,Xi’an;2.ATTL Advanced Materials Co,Ltd;3.School of Materials Science and Engineering,The University of Sheffield,Sheffield,UK,S QF

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    本文研究了粉末冶金制备的W-4Re-0.27HfC合金的拉伸蠕变行为,测试环境为真空,蠕变温度为1500~1700℃,蠕变应力为40~60MPa。采用SEM、EBSD和TEM观察其微观组织,表征晶粒尺寸和位错等组织在蠕变过程中的演变规律。结果表明,W-4Re-0.27HfC合金的稳态蠕变速率范围为1′10-7~5′10-6,较纯钨(W)低两个数量级。W-4Re-0.27HfC合金抗蠕变性能优于纯W主要原因是弥散分布的HfC颗粒钉扎位错和Re取代W原子产生晶格畸变阻碍位错运动,降低位错迁移率。蠕变温度为1500℃时,W-4Re-0.27HfC的蠕变机制以位错滑移为主,伴随有晶界滑动。随着温度升高,位错攀移成为主要蠕变机制。HfC颗粒塞积位错,导致HfC/基体界面结合变差,HfC颗粒剥落出现孔洞,合金蠕变性能下降。

    Abstract:

    In this paper, the tensile creep behavior in vacuum of W-4Re-0.27HfC alloy prepared by powder metallurgy was studied. The creep temperature was 1500~1700℃ and the creep stress was 40~60MPa. SEM, EBSD and TEM observations were used to observe the microstructure, characterize the evolution of grain size and dislocation during the creep process. The results show that the steady creep rate of W-4Re-0.27HfC alloy ranges from1′10-7~5′10-6, which is two orders of magnitude lower than that of pure tungsten (W). The creep resistance of W-4Re-0.27HfC alloy is higher than that of pure W due to the dislocation pinned by HfC particles and the lattice distortion caused by Re replacing W atoms. The creep mechanisms of W-4Re-0.27HfC is mainly dislocation slip, accompanied by grain boundary slip at 1500℃. Dislocation climb becomes the main creep mechanism with increasing temperature. The dislocations were blocked by the HfC particles, which leads to the debonding of the HfC/ matrix interface. Moreover, the desquamation of HfC particles forms pores, which results in the great degradation in the creep properties of the alloy.

    参考文献
    [1]朱玲旭, 燕青芝, 郎少庭, 等. 钨基面向等离子体材料的研究进展[J].中国有色金属学报, 2012, 22(12):3522-3528.
    [2] Jaffee R I,Sims C T,Hardwood J J. The effect of Rhenium on the fabrication and ductility of molybdenum and Tungsten[C]. Plansee-Seminar Proceedings,Reutte,Austria: Plansee Group, 1958: 380-410.
    [3]杨世民, 范景莲. 铈、镧、钇、铼、钾对钨材料的强化机制探讨[J].硬质合金,2015,32(01):19-23.
    [4]Gao H,Zee R. A Semi-mechanistic creep model for tungsten and molybdenum based solid solution alloys[J].Scripta Metallurgica Et Materialia,1995,32(10):1665-1670.
    [5]Klopp,Witzke. Mechanical properties of a tungsten 23.4rhenium 0.27hafnium carbon alloy[J].Journal of the Less Common Metals, 1971,24(4):427-443.
    [6]Vandervoort,R.R. Creep behavior of W-5Re[J].Metallurgical Transactions,1970,1(4):857-864.
    [7]K.Y,Wang.S,Miao et al. Thermal stability and mechanical properties of HfC dispersion strengthened W alloys as plasma facing components in fusion devices[J].Journal of Nuclear Materials, 2017,492(08):260-268.
    [8]Li Y,Li L,Li J et al. Microstructural evolution and hot deformation behavior of W-3Re-5HfC alloy[J].International Journal of Refractory Metals and Hard Materials,2021(2):105535.
    [9]H.M. Yun. Effect of composition and microstructure on the creep and stress-rupture behaviour of tungsten alloy wires at 1366-1500K[J].Materials Science and Engineering:A,1993, 165(1):65-74.
    [10]Ren C,Fang Z Z,Koopman M et al. Methods for improving ductility of tungsten-A review[J].International Journal of Refractory Metals and Hard Materials, 2018, 75(9):170-183.
    [11]Butler,Paramore,Ligda et al. Mechanisms of deformation and ductility in tungsten – A review[J].International Journal of Refractory Metals and Hard Materials,Volume,2018,75(9): 248-261.
    [12]吴凯鹏. 基于铼掺杂的纳米多晶钨晶界影响区强化机制[D].西南交通大学, 2020.
    [13]Golan O,Arbel A,Eliezer D et al. The applicability of Norton''s creep power law and its modified version to a single-crystal superalloy type CMSX-2[J].Materials Science & Engineering A, 1996,216(1-2):125-130.
    [14]Gordon,Vandermeer. The mechanisms of boundary migration in recrystallization[J].Trans.Metall.Soc.AIME,1962,224(1):917-928.
    [15]Lee D,Umer M A,Ryu H J et al. Elevated temperature ablation resistance of HfC particle-reinforced tungsten composites[J]. International Journal of Refractory Metals and Hard Materials, 2014(43):89–93.
    [16]孟杨,任群,鞠新华.利用局域取向差衡量变形金属中的位错密度[J].材料热处理学报, 2014(11):7
    [17]Hahn,Meyers. Grain-size dependent mechanical behavior of nanocrystalline metals[J].Materials Science & Engineering A,2015,646(14):101-134.
    [18]G.King,H.Sell. The effect of thoria on the elevated temperature tensile properties of recrystallized high purity tungsten,Trans[J]. Metall.Soc.AIME,1965,82(5):132-162.
    [19]Luo A,Shin K S,Jacobson D L.Hafnium carbide strengthening in a tungsten-rhenium matrix at ultrahigh temperatures[J].Acta Metallurgica Et Materialia,1992,40(9):2225-2232.
    [20]Park J J. Creep strength of a tungsten–rhenium–hafnium carbide alloy from 2200 to 2400K[J].Materials Science and Engineering A,1999,265(1):174-178.
    [21]Klopp W D,Witzke W R. Mechanical properties of a tungsten 23.4rhenium 0.27hafnium-carbon alloy[J].Journal of the Less Common Metals,1971,24(4):427-443.
    [22]B.Harris,E.Ellison. Creep and tensile properties of heavily drawn tungsten wire,Trans[J].Vacuum,1967,17(7):428.
    [23]Wang,Du G,Chen N et al. Ideal strengths and thermodynamic properties of W and W Re alloys from first-principles calculation[J]. Fusion Engineering and Design,2020,155(6):111579.
    [24] Magri M,Lemoine G,Adam L et al. A coupled model of diffusional creep of polycrystalline solids based on climb of dislocations at grain boundaries[J].Journal of the Mechanics and Physics of Solids,2020,135(1):103786.1-103786.20
    [25]Mingqui Liu,John Cowley. Hafnium carbide growth behavior and its relationship to the dispersion hardening in tungsten at high temperature[J].Materials Science and Engineering:A,1993,160(2):159-167
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王琛瑞,董帝,应雯清,张超,王承阳,李玫,孙尚玥,张程煜. W-4Re-0.27HfC合金的1500~1700℃拉伸蠕变性能及损伤机理[J].稀有金属材料与工程,2023,52(10):3600~3607.[Wang Chenrui, Dong Di, Ying Wenqing, Zhang Chao, Wang Chengyang, Li Mei, Sun Shangyue, Zhang Chengyu. Tensile creep properties and damage mechanisms of W-4Re-0.27HfC alloy at 1500~1700 ℃[J]. Rare Metal Materials and Engineering,2023,52(10):3600~3607.]
DOI:10.12442/j. issn.1002-185X.20220773

复制
文章指标
  • 点击次数:263
  • 下载次数: 1029
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-09-29
  • 最后修改日期:2023-10-09
  • 录用日期:2022-11-24
  • 在线发布日期: 2023-10-27
  • 出版日期: 2023-10-24