+高级检索
不同Mn含量Cu-Mn合金熔覆层的腐蚀特性
作者:
作者单位:

华北电力大学 电站能量传递转化与系统教育部重点实验室,北京 102206

中图分类号:

TG172

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Corrosion Characteristics of Cu-Mn Cladding Layers with Different Mn Contents
Author:
Affiliation:

Key Laboratory of Power Station Energy Transfer Conversion and System, Ministry of Education, North China Electric Power University, Beijing 102206, China

Fund Project:

Study Project of Galvanic Corrosion Behavior and Protection Technology of Dissimilar Structural Materials in South China Sea Environment (61409220202)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为研究不同Mn含量Cu-Mn合金熔覆层的腐蚀特性和防污性能,利用激光熔覆技术制备了成分均匀、稀释率低的Cu-Mn合金熔覆层。采用电化学测试、盐雾腐蚀实验、腐蚀形貌观察及铜离子释放试验对3种不同Mn含量的Cu-Mn合金熔覆层在3.5%(质量分数)NaCl溶液中的腐蚀特性进行研究,重点研究了Mn对腐蚀产物和铜离子释放率的影响。结果表明:在电化学测试中,随着Mn含量增多,熔覆层的耐腐蚀性降低。盐雾腐蚀实验中,随着Mn含量的增多,Cu-Mn合金熔覆层腐蚀程度加深,平均质量损失增大。对电解腐蚀后的熔覆层样品进行腐蚀形貌观察,Mn含量高的Cu-Mn合金样品生成的腐蚀产物较低Mn含量的样品更疏松,裂纹孔洞数量多,腐蚀产物更易剥落。铜离子释放试验中,3种Mn含量合金熔覆层样品都可以抑制海洋生物生长,且Mn含量越高,铜离子渗出率越大,在防污材料方面有良好的应用前景。

    Abstract:

    To investigate the corrosion characteristics and anti-fouling properties of Cu-Mn cladding layers with different Mn contents, the laser cladding technique was used to prepare Cu-Mn cladding layers with homogeneous composition and low dilution rate. Electrochemical tests, salt spray corrosion experiments, corrosion morphology observations, and copper ion release tests were conducted to investigate the corrosion characteristics of Cu-Mn cladding layers with different Mn contents in 3.5wt% NaCl solution. The effect of Mn on corrosion products and copper ion release rate was particularly studied. Results show that the corrosion resistance of cladding layers is decreased with increasing the Mn content during the electrochemical tests. In the salt spray corrosion experiments, the corrosion degree of the Cu-Mn cladding layer is deepened with increasing the Mn content, and the average mass loss is increased. The corrosion morphology of cladding layers after electrolytic corrosion was observed. Compared with those of Cu-Mn cladding layer with low Mn content, the corrosion products generated from Cu-Mn cladding layer with high Mn content have more sparse structure, the number of crack holes is larger, and the corrosion products are easier to peel off. In the copper ion release test, all cladding layers can inhibit the growth of sea creatures. The higher the Mn content, the greater the copper ion release rate, presenting great application potential in anti-fouling materials.

    参考文献
    [1] Deng Dewei, Zheng Haitong, Ma Zhandong et al. Journal of Functional Materials[J], 2020, 51(6): 6001 (in Chinese)
    [2] Kong Y, Liu Z D, Li B. Rare Metal Materials and Engi- neering[J], 2021, 50(8): 2694
    [3] Zhao Jiuyi. Special Casting & Nonferrous Alloys[J], 2006, 26(6): 390 (in Chinese)
    [4] Li Cong, Li Mingzhao, Wang Yueqi et al. Rare Metal Materials and Engineering[J], 2011, 40(1): 156 (in Chinese)
    [5] Ren L, Cheng Y H, Wang Q H et al. Colloids and Surfaces A[J], 2020, 591: 124 502
    [6] Chasse K R, Scardino A J, Swain G W. Progress in Organic Coatings[J], 2020, 141: 10 555
    [7] Rajesh R, Kulkarni M V, Vergis B R et al. Materials Today: Proceedings[J], 2022, 49(3): 703
    [8] Drach A, Tsukrov I, DeCew J et al. Corrosion Science[J], 2013, 76: 453
    [9] Liu B S, Wang Y N, Zhang Y Z et al. Rare Metal Materials and Engineering[J], 2021, 50(1): 49
    [10] Sugimoto, K, Hoshino K, Kageyama M et al. Corrosion Sci- ence[J], 1975, 15(6–12): 709
    [11] Ma Conghui, Wang Changjun, Shen Tao et al. Heat Treatment of Metals[J], 2020, 45(8): 97 (in Chinese)
    [12] Huang Yongchang, Jin Xiaodong. Corrosion & Protection[J],1990, 11(2): 90 (in Chinese)
    [13] Chang T, Herting G, Goidanich S et al. Corrosion Science[J], 2019, 149: 54
    [14] Chang T, Maltseva A, Volovitch P et al. Corrosion Science[J], 2020, 166: 108 477
    [15] Cheng Ji. Special Casting & Nonferrous Alloys[J], 1991, 11(4): 33 (in Chinese)
    [16] Niu C N, LaRosa C R, Miao J S et al. Nature Communica- tions[J], 2018, 9(1): 1363
    [17] Christofidou K A, Pickering K J, Orsatti P et al. Intermetal- lics[J], 2018, 92: 84
    [18] Bracq G, Laurent-Brocq M, Perrière L et al. Acta Materialia[J], 2017, 128(15): 327
    [19] Kai W, Li C C, Cheng F P et al. Corrosion Science[J], 2016, 108: 209
    [20] Gu Yu, Dong Changsheng, Ma Mingxing et al. Acta Metallurgica Sinica[J], 2011, 47(3): 349 (in Chinese)
    [21] Zheng Jiwei, Zhang Shichao, Liu Wenbo et al. Hot Working Technology[J], 2011, 40(24): 40 (in Chinese)
    [22] Zhang Rongwei, Sun Junwei, Li Shengyan et al. Nonferrous Metals Science and Engineering[J], 2018, 9(4): 60 (in Chinese)
    [23] Pardo A, Merina M C, Coy A E et al. Corrosion Science[J], 2008, 50(6): 1796
    [24] An L C, Cao J, Wu L C et al. Journal of Iron and Steel Research International Volume[J], 2016, 23(12): 1333
    [25] Kong D C, Dong C F, Ni X Q et al. npj Materials Degrada- tion[J], 2019, 3(1): 24
    [26] Cai Y C, Chen Y, Lou Z et al. Materials & Design[J], 2017, 133: 91
    [27] Singh S, Singh P, Singh H et al. Materials Today: Proceed- ings[J], 2019, 18(3): 830
    [28] Ramachandran S, Lakshminarayanan A K. Transactions of Nonferrous Metals Society of China[J], 2020, 30(3): 727
    [29] Tang C H, Cheng F T, Man H C. Surface and Coatings Technology[J], 2004, 182(2–3): 300
    [30] Fan Xuehua, Yu Yong, Zhang Ziru et al. Surface Technology[J], 2020, 49(7): 287 (in Chinese)
    [31] Wang X W, Wang W, Chen W et al. Journal of Materials Science & Technology[J], 2022, 98: 219
    [32] Giuliani L, Tamba A, Modena C. Corrosion Science[J], 1971, 11(7): 485
    [33] Horton D J, Ha H, Foster L L et al. Electrochimica Acta[J], 2015, 169: 351
    [34] Chen Qingjun, Jiang Wei, Zhang Fabi et al. Rare Metal Materials and Engineering[J], 2016, 45(9): 2322 (in Chinese)
    [35] Chen Hu, Zhou Hao, Wang Shuli et al. Corrosion & Protec- tion[J], 2018, 39(12): 936 (in Chinese)
    [36] Nyby C, Guo X L, Saal J E et al. Scientific Data[J], 2021, 8(1): 58
    [37] Yang X T, Zeng R, Fu X Y et al. Corrosion Science[J], 2022, 205: 110 408
    [38] Li B Z, Ouyang Y B, Haider Z et al. Colloids and Surfaces A[J], 2021, 616: 126 337
    [39] Ekerenam O O, Ma A L, Zheng Y G et al. Journal of Materials Engineering and Performance[J], 2017, 26(4): 1701
    [40] Sun Tingting, Li Ning, Xue Jianjun et al. Equipment Environmental Engineering[J], 2010, 7(4): 25 (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

齐英男,刘宗德,谢瑞祥,马荷蓉,宁华清.不同Mn含量Cu-Mn合金熔覆层的腐蚀特性[J].稀有金属材料与工程,2023,52(7):2353~2363.[Qi Yingnan, Liu Zongde, Xie Ruixiang, Ma Herong, Ning Huaqing. Corrosion Characteristics of Cu-Mn Cladding Layers with Different Mn Contents[J]. Rare Metal Materials and Engineering,2023,52(7):2353~2363.]
DOI:10.12442/j. issn.1002-185X.20230016

复制
文章指标
  • 点击次数:569
  • 下载次数: 1218
  • HTML阅读次数: 142
  • 引用次数: 0
历史
  • 收稿日期:2023-01-11
  • 最后修改日期:2023-02-01
  • 录用日期:2023-02-14
  • 在线发布日期: 2023-07-31
  • 出版日期: 2023-07-27