+高级检索
核级IN718高温合金中混晶原因及其对力学性能的影响
作者:
作者单位:

1.中国科学技术大学 材料科学与工程学院;2.中国科学院核用材料与安全评价重点实验室中国科学院金属研究所;3.中广核铀业发展有限公司中广核先进燃料研制中心;4.中国科学院金属研究所 师昌绪先进材料创新中心


Causes of mixed grains in nuclear grade IN718 high temperature alloy and its effect on mechanical properties
Author:
Affiliation:

1.School of Materials Science and Engineering,University of Science and Technology of China,Shenyang;2.Shi-changxu Innovation Center for Advanced Materials,Institute of Metal Research,Chinese Academy of Sciences,Shenyang

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    718合金因其在高温下优异的机械性能和良好的加工性能,已成为核电、航空等领域的关键材料。核级718合金需满足抗辐照能力强、热中子吸收截面小等特殊要求,因此,合金中Ni、Nb、C 等元素含量一般控制在较低水平,然而对这种低Ni、Nb、C的核级718合金热变形组织性能的研究较少。本工作通过设计不同初轧温度及变形量,研究了不同热轧工艺参数及轧后热处理对核级718合金组织和拉伸性能的影响。结果表明,在初轧温度低于1150℃且热变形量低于90%的条件下,组织中出现大量拉长晶,并降低合金的延伸率;当初轧温度达到1150℃或热变形量达到90%时,可以得到均匀的等轴晶组织。轧后板材进行990℃固溶处理后,δ相析出并对晶界产生钉扎作用,形成了混晶显微组织且在标准时效处理后315℃屈服、抗拉强度均值可达到1050MPa和1238MPa,断后伸长率高达26%;当进行1020℃固溶处理后可得长大的等轴晶粒,标准时效处理后315℃屈服、抗拉强度均值可达到985MPa和1175MPa,断后伸长率高达29%,显示出良好的强韧性。

    Abstract:

    718 alloys have become key materials in nuclear power and aerospace fields because of their excellent mechanical properties and good high-temperature processing performance. Nuclear grade 718 alloys need to meet special requirements such as strong irradiation resistance and small thermal neutron absorption cross-section, therefore, the elemental content of Ni, Nb, and C in alloys is generally controlled at low levels, however, there is less research on the thermal deformation structures and properties of such low Ni, Nb, and C nuclear grade 718 alloys. This work investigated the effects of different hot rolling process parameters and post-rolling heat treatment on the structures and tensile properties of nuclear grade 718 alloys by designing different initial rolling temperatures and deformation amounts. The results show that, under the condition that the initial rolling temperature is below 1150℃ and the heat deformation is lower than 90%, a large number of elongated grains appear in the structure and the elongation of the alloy is reduced; when the initial rolling temperature achieves 1150℃ or the heat deformation reaches 90%, a uniform equiaxed grain structure can be obtained. After the solid solution treatment of the rolled plate at 990℃, δ phases are precipitated and pinned to grain boundaries, forming a mixed grain microstructure, as well as the average values of yield and tensile strength at 315°C after standard aging treatment can reach 1050MPa and 1238MPa, accompanied by an elongation after the fracture as high as 26%; Upon solid solution treatment at 1020°C, the grown equiaxed grains are obtained, whereas the average yield and tensile strength at 315°C can attain 985MPa and 1175MPa after standard aging treatment, respectively, and the elongation after the break is up to 29%, showing good strength and toughness.

    参考文献
    [1]Slama C,Abdellaoui M. Journal of Alloys Compounds[J],2000,306(1-2):277
    [2]Anderson M,Thielin A LBridier F,et al. Materials Science and Engineering A[J],2017,679(jan.2):48
    [3]Zhuang Jingyun(庄景云),Du Jinhui(杜金辉),Deng Qun(邓群) et al.Wrought Superalloy GH4169(变形高温合金GH4169)[M].Beijing:Metallurgical Industry Press,2011:1
    [4]Chen Shimin(陈世民). Nuclear Power Engineering(核动力工程)[J],1999,20(4):5
    [5]Li Hongyu(李红宇),Liu Yang(刘杨),Xue Jingjing(薛晶晶) et al. Transactions of Materials and Heat Treatment(材料热处理学报)[J],2020,41(10):38
    [6]Zhou Bixuan(周碧轩),Liu Lirong(刘丽荣),Yang Yanhong(杨彦红) et al. Foundry(铸造)[J],2020,69(03):223
    [7]Yang J,Qi Z,Ji M et al. Materials Science Engineering A[J],2011,528(3):1534
    [8]Guo Jianting(郭建亭).Materials science and engineering for superalloys(高温合金材料学)[M].Beijing:Science Press,2008:128
    [9]LiuYongchang(刘永长),Zhang Hongjun(张宏军),Guo Qianying(郭倩颖) et al. Acta Metallurgica Sinica(金属学报)[J],2018,54(11):1653
    [11]Liu Yang(刘杨),Wang Lei(王磊),He Sisi(何思斯) et al. Acta Metallurgica Sinica(金属学报)[J],2012,48(01):49
    [12]Liu W C,Xiao F R,Yao M et al. Scripta Materialia[J],1997,37(1):53
    [13]Mei Y,Liu Y,Liu C et al. Journal of Alloys and Compounds[J],2015,649
    [14]Tehovnik F,Burja J,Podgornik B et al. Materiali in Tehnologije[J],2015,49(5):801
    [15]Yuan Y,Gu Y F,Osada T et al. Scripta Materialia[J],2012,67(2):1372
    [16]ZhuLina(朱丽娜),LiWen(李文),QiFeng(祁峰) et al. Heat Treatment of Metals(金属热处理)[J],2011,36(04):58
    [17]Ashby,M.F. Philosophical Magazine[J],1970,21(170):399
    [18]Chen S,Butler J,Melzer S. Journal of Magnetism and Magnetic Materials[J],2014,368(11):342
    [19]Li Haoze(李昊泽),Li Min(李民),Liu Dezhuang(刘德壮) et al. Electrical Steel(电工钢)[J],2022,4(01):18
    [20]Liu Dong(刘东),Luo Zijian(罗子健). Hot Working Technology(热加工工艺)[J],2004,(09):3
    [21]Chen Xi(陈曦),Qi Yaoguo(亓耀国),Shi Xiaonan(史晓楠) et al. Chinese Journal of Rare Metals(稀有金属)[J],2019,43(12):1260
    [22]Hu Gengxiang(胡赓祥),Cai Xun(蔡珣),Rong Yonghua(戎咏华).Fundamentals of Materials Science(材料科学基础)[M].Shanghai:Shanghai Jiao Tong University Press,2010:199
    [23]Wang Jian(王健),Han Yinben(韩寅奔),Zhang Tiebang(张铁邦) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2014,43(12):3018
    [24]Sha Guiying(沙桂英).Mechanical properties of materials(材料的力学性能)[M].Beijing:Beijing Institute of Technology Press,2015:65
    [25]Zhang A,Zhang S,Liu F et al. Journal of Materials Science Technology[J],2019,35(7):1485
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李奥迪,梁田,张学粮,赵霞,王惠生,陈嘉诚,马颖澈.核级IN718高温合金中混晶原因及其对力学性能的影响[J].稀有金属材料与工程,2024,53(3):736~747.[Li Aodi, Liang Tian, Zhang Xueliang, Zhao Xia, Wang Huisheng, Chen Jiacheng, Ma Yingche. Causes of mixed grains in nuclear grade IN718 high temperature alloy and its effect on mechanical properties[J]. Rare Metal Materials and Engineering,2024,53(3):736~747.]
DOI:10.12442/j. issn.1002-185X.20230094

复制
文章指标
  • 点击次数:292
  • 下载次数: 630
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-02-27
  • 最后修改日期:2023-05-05
  • 录用日期:2023-05-11
  • 在线发布日期: 2024-03-27
  • 出版日期: 2024-03-20